Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(44): 16973-16981, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36300794

RESUMO

The reaction of potassium (aza-15-crown-5)dithiocarbamate (KO4NCS2) and (Me2S)AuCl gave the dinuclear complex [Au(O4NCS2)]2, which underwent structural transformation upon heating to rearrange into the hexanuclear complex [Au(O4NCS2)]6. Under similar reaction conditions, KO4NCS2 reacted with AgNO3 or [Cu(CH3CN)4]ClO4 to give the 1-D coordination polymer [Ag(O4NCS2)]n (1) and the tetranuclear complex [Cu(O4NCS2)]4 (2), respectively. It is noted that upon heating a similar structural transformation process occurs from tetranuclear complex 2 to the octanuclear complex [Cu(O4NCS2)]8 (2'), connected by a weak Cu⋯S contact of 2.846 Å, and it has been isolated and corroborated by powder and single-crystal X-ray diffraction studies as well. Moreover, a variety of MO4NCS2 salts (M = Li+, Na+, K+ and Rb+) were used to react with AgNO3 to construct a series of coordination architectures: [LiAg(O4NCS2)2(µ-H2O)0.5]2 (3), {Na[Ag(O4NCS2)2]}n (4), {K[Ag(O4NCS2)2]}n (5) and {Rb[Ag(O4NCS2)2]}n (6). The smallest Li+ ion only coordinates with four oxygen atoms from the same azacrown ether ring and one H2O molecule, leading to a 1-D hydrogen-bonded chain with another azacrown ether ring for complex 3. The larger Na+ ion coordinates with seven oxygen atoms from two different crown ether rings, leading to a 1-D chain for complex 4. However, the largest K+ and Rb+ ions constitute a 1-D framework, except that each metal ion coordinates with eight oxygen atoms from two different crown ether rings, featuring a 1-D helical chain for complexes 5 and 6. Hence, the different sizes of alkaline metal ions exert a dramatic effect on the structural motifs of complexes 3-6. Remarkably, the dithiocarbamate moieties adopt µ2-bridging ([Au(O4NCS2)]2 and [Au(O4NCS2)]6), µ3- and µ4-bridging (1-2) and chelate forms (3-6) in the structural backbones.


Assuntos
Complexos de Coordenação , Éteres de Coroa , Complexos de Coordenação/química , Íons , Oxigênio
2.
Opt Lett ; 44(6): 1512-1515, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874689

RESUMO

In this work, for the first time, to the best of our knowledge, an anomalous dispersion CMOS-compatible Ta2O5 waveguide was realized, and broadband on-chip supercontinuum generation (SCG) was accordingly demonstrated. When pumped at a center wavelength of 1056 nm with pulses of 100 fs duration and peak power of 396 W, a supercontinuum ranging from 585 nm to 1697 nm was generated, comprising a bandwidth of more than 1.5 octaves and leading to an efficient SCG source. The excellent performance for Ta2O5 to generate SCG benefits mainly from its high nonlinear refractive index, which enhances the efficiency of the nonlinear conversion process.

3.
Opt Lett ; 42(23): 4804-4807, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216115

RESUMO

The Ta2O5-based micro-ring resonator with an unloaded quality factor of 182,000 has been demonstrated to realize efficient nonlinear wavelength generation. The propagation loss of the resonator is 0.5 cm-1, and the buildup factor of the ring resonator is estimated to be ∼50. With a high buildup factor of the ring structure, the four-wave-mixing (FWM) conversion efficiency of -30 dB is achieved in the resonator with a pump power of 6 mW. Based on power-dependent FWM results, the nonlinear refractive index of Ta2O5 is estimated to be 1.4×10-14 cm2/W at a wavelength of ∼1550 nm. The demonstration of an enhanced FWM process in the Ta2O5-based micro-ring cavity implies the possibility of realizing FWM-based optical parametric oscillation in a Ta2O5-based micro-ring resonator.

4.
Nat Commun ; 8: 15018, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28436430

RESUMO

Transition metal oxides with a perovskite crystal structure exhibit a variety of physical properties associated with the lattice. Among these materials, strontium ruthenate (SrRuO3) displays unusually strong coupling of charge, spin and lattice degrees of freedom that can give rise to the photostriction, that is, changes in the dimensions of material due to the absorption of light. In this study, we observe a photon-induced strain as high as 1.12% in single domain SrRuO3, which we attribute to a nonequilibrium of phonons that are a result of the strong interaction between the crystalline lattice and electrons excited by light. In addition, these light-induced changes in the SrRuO3 lattice affect its electrical resistance. The observation of both photostriction and photoresistance in SrRuO3 suggests the possibility of utilizing the mechanical and optical functionalities of the material for next-generation optoelectronics, such as remote switches, light-controlled elastic micromotors, microactuators and other optomechanical systems.

5.
Opt Express ; 24(19): 21633-41, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661901

RESUMO

Optical spectra broadening as a result self-phase modulation in a channel waveguide fabricated on a high quality tantalum pentoxide (Ta2O5) film by using RF sputtering is measured. The full-width at half maximum of the optical spectra for transverse electric (TE)/transverse magnetic (TM) polarizations of 42.5/31.7 nm is obtained using pulses of 10 nm at a wavelength of 800 nm with a peak-coupled power of 43.77 W. The nonlinear Kerr coefficients of 2.14 × 10-14 cm2/W and 1.92 × 10-14 cm2/W for TE and TM polarizations, respectively, are then extracted from the experiments using a theoretical model based on the method of moments. The obtained results on the nonlinearity further suggest that Ta2O5 is a promising material to develop nonlinear waveguide devices for integrated photonics.

6.
Nanoscale ; 8(8): 4579-87, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26842460

RESUMO

The catalytic solid-phase synthesis of self-organized nanoporous tin sulfide (SnS) with enhanced absorption, manipulative transmittance and depolarization features is demonstrated. Using an ultralow radio-frequency (RF) sputtering power, the variation of the orientation angle between the anodized aluminum oxide (AAO) membrane and the axis of the sputtered ion beam detunes the catalytically synthesized SnS from nanorod to nanoporous morphology, along the sidewall of the AAO membrane. The ultraslow catalytic sputtering synthesis on the AAO at the RF plasma power of 20 W and the orientation angle of 0° regulates the porosity and integrality of nanoporous SnS, with average pore diameter of 80-150 nm. When transferring from planar to nanoporous structure, the phase composition changes from SnS to SnS2-Sn2S3, and the optical bandgap shrinks from 1.43 to 1.16 eV, due to the preferred crystalline orientation, which also contributes to an ultralow reflectance of <1% at 200-500 nm when both the transmittance and the surface scattering remain at their maxima. The absorption coefficient is enhanced by nearly one order of magnitude with its minimum of >5 × 10(4) cm(-1) at the wavelength between 200 and 700 nm, due to the red-shifting of the absorption spectrum to at least 100 nm. The catalytically self-organized nanoporous SnS causes strong haze and beam divergence of 20°-30° by depolarized nonlinear scattering at the surface, which favors the solar energy conversion with reduced surface reflection and enhanced photon scattering under preserved transmittance.

7.
Opt Lett ; 40(19): 4528-31, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26421573

RESUMO

A degenerate four-wave-mixing (FWM) operation in the Ta2O5 submicrometer channel waveguide has been successfully demonstrated. The propagation loss of 1.5 dB/cm and total insertion loss of 5.1 dB are realized in a 12.6 mm long waveguide with inverse taper structure. The wavelength and quadratic pumping power-dependent measurements on optical transmission confirm FWM performance and characterize the nonlinearity of waveguide. The conversion efficiency of -50 dB at coupled pump power of 40 mW is observed, suggesting that the nonlinear refractive index of Ta2O5 waveguide at 1550 nm is estimated to be 1×10(-14) cm2/W. Our primary results indicate that the Ta2O5 submicrometer channel waveguide has great potential in developing nonlinear waveguide applications.

8.
Opt Express ; 23(20): 26268-75, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480140

RESUMO

A low-loss and high-Q Ta(2)O(5) based micro-ring resonator is presented. The micro-ring resonator and channel waveguide with core area of the 700 by 400 nm(2) were fabricated on amorphous Ta(2)O(5) thin films prepared by reactive sputtering at 300°C and post annealing at 650°C for 3 hours. The Ta(2)O(5) micro-ring resonator with a diameter of 200 µm was coupled to the channel waveguide with a coupled Q up to 38,000 at a 0.9 µm coupling gap. By fitting the transmission spectrum of the resonator, the extracted loss coefficient inside the ring cavity and transmission coefficient of TE mode were 8.1dB/cm and 0.9923, leading to the estimated unloaded Q of higher than 44,000. In addition, based on the cut-back method, the propagation loss and the coupling loss of Ta(2)O(5) channel waveguide with an inverse taper were 1.5dB/cm and 3.2 dB, respectively. The proposed Ta(2)O(5) technology offers an unique alternative for fabricating high performance guided wave devices, and may well lead to novel applications in photonic integrated circuits.

9.
Sci Rep ; 5: 13689, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26328535

RESUMO

The in-situ dissolution-and-reduction CVD synthesized few-layer graphene on ultra-thin nickel catalyst film is demonstrated at temperature as low as 550 °C, which can be employed to form transmission-type or reflection-type saturable absorber (SA) for mode-locking the erbium-doped fiber lasers (EDFLs). With transmission-type graphene SA, the EDFL shortens its pulsewidth from 483 to 441 fs and broadens its spectral linewidth from 4.2 to 6.1 nm with enlarging the pumping current from 200 to 900 mA. In contrast, the reflection-type SA only compresses the pulsewidth from 875 to 796 fs with corresponding spectral linewidth broadened from 2.2 to 3.3 nm. The reflection-type graphene mode-locker increases twice of its equivalent layer number to cause more insertion loss than the transmission-type one. Nevertheless, the reflection-type based saturable absorber system can generate stabilized soliton-like pulse easier than that of transmission-type system, because the nonlinearity induced self-amplitude modulation depth is simultaneously enlarged when passing through the graphene twice under the retro-reflector design.

10.
Sci Rep ; 5: 9611, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25923653

RESUMO

Silicon photonic interconnection on chip is the emerging issue for next-generation integrated circuits. With the Si-rich SiNx micro-ring based optical Kerr switch, we demonstrate for the first time the wavelength and format conversion of optical on-off-keying data with a bit-rate of 12 Gbit/s. The field-resonant nonlinear Kerr effect enhances the transient refractive index change when coupling the optical data-stream into the micro-ring through the bus waveguide. This effectively red-shifts the notched dip wavelength to cause the format preserved or inversed conversion of data carried by the on-resonant or off-resonant probe, respectively. The Si quantum dots doped Si-rich SiNx strengthens its nonlinear Kerr coefficient by two-orders of magnitude higher than that of bulk Si or Si3N4. The wavelength-converted and cross-amplitude-modulated probe data-stream at up to 12-Gbit/s through the Si-rich SiNx micro-ring with penalty of -7 dB on transmission has shown very promising applicability to all-optical communication networks.

11.
Opt Express ; 21(20): 23416-24, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24104255

RESUMO

We demonstrate stable and tunable light emission in ultraviolet to near infrared regime by using annealed SiOx sample. By adjusting the ratio of Si and O of SiOx, different wavelengths such as ultraviolet, visible and near infrared photoluminescence can be tuned. From the results of transmission electron microscope, various sizes (1~4 nm) of the embedded Si nanoparticles were formed. Nanoparticles with smaller sizes were indeed formed for UV-blue emitting samples and the origin of light emission may be misattributed to the quantum confinement effects. However, we found the efficient and stable light emission in UV-blue regime, with lifetime on the order of nanoseconds, is dominantly from the defects.

12.
Opt Express ; 21(1): 391-403, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388932

RESUMO

The enhanced recombination and external quantum efficiency (EQE) of the multi-color metal-oxide-semiconductor light-emitting diodes (MOSLEDs) made on the SiOx film with buried Si quantum dots (Si-QDs) grown by plasma-enhanced chemical vapor deposition are demonstrated. By shrinking Si-QD size from 4.2 to 1.8 nm with increasing RF plasma power from 20 to 50 W, these MOSLEDs enhance the maximal electroluminescent (EL) power from 0.1 to 0.7 µW. This is mainly attributed to the enhanced recombination rate by enlarging the overlap between electron and hole wave-functions. As evidence, the photoluminescent lifetime is significantly shortened from 5 µs to 0.31µs due to the enhanced direct recombination in smaller Si-QDs. The corresponding power-current slope and EQE are observed to increase from 0.09 to 5.7 mW/A and from 1.9 × 10(-5) to 2.4%, respectively. The EL enhancement originates from shorter wavelength and stronger carrier confinement within Si-QDs with smaller size, as confirmed by the increased barrier height at the ITO/SiOx:Si-QD interface from 1.05 to 3.62 eV. The smaller and denser Si-QDs result in a current endurance to operate the MOSLED at breakdown edge with highest power conversion efficiency, thus providing a maximal blue-light EL power at 0.7 µW with the highest EQE of 2.4%.

13.
Opt Express ; 19(7): 6563-70, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21451684

RESUMO

A 24-pair Si-rich SiNx/SiOx-based distributed Bragg reflector (DBR) architecture, in situ doped with Si nanocrystals (Si-ncs), is studied to show self-photoluminescence (PL) with narrow-linewidth green-color emission pattern. By cascaded depositing, the broadband luminescent SiNx/SiOx pairs with SiNx and SiOx layer thickness of 45 and 86 nm and corresponding refractive indices of 1.96 and 1.62, respectively, and the transmitted PL linewidth of the in situ Si-nc-doped DBR emitter/filter centered at a wavelength of 533 nm greatly reduces from 150 to 10 nm, which is achieved by blocking the UV and blue luminescence at 400-510 nm with the DBR filter bandwidth up to 95 nm. A multilayer DBR modeling is established to simulate the transmitted PL from the summation of each emissive SiNx/SiOx pair, providing a coincident PL shape with a spectral linewidth of 15 nm.


Assuntos
Iluminação/instrumentação , Medições Luminescentes/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Opt Express ; 18(9): 9213-9, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20588768

RESUMO

The SiO(2)/SiO(x)/SiO(2) strip-loaded waveguide on Si substrate with buried Si nanocrystals (Si-ncs) in SiO(x) layer is demonstrated to show the Si-nc dependent optical gain. The amplified spontaneous emission (ASE) spectrum at 750-850 nm is observed with central wavelength of 805 nm and 3dB spectral linewidth of 140 nm. The optical net modal gain and loss coefficients of 85.7 cm(-1) and 21 cm(-1), respectively, are determined from the waveguide length dependent ASE intensity. By attenuating 785-nm laser diode signal to inject the pumped SiO(2)/SiO(x)/SiO(2) strip-loaded waveguide, a small-signal power gain of 13.5 decibel (dB) is obtained. Increasing the laser diode power shows a significantly reduced power gain with a saturated output power due to the finite density of the optically pumped Si-ncs. The fitting of power-dependent gain with a gain-saturated amplifier model reveals a peak gain of 35 dB and a saturation power of 1.1 nW for the SiO(2)/SiO(x):Si-nc/SiO(2)/Si strip-loaded waveguide. Similar output saturation is also observed with increasing pumping power. With the presence of optical gain in the optically pumped Si-ncs, the intended application will be the monolithic integration of the Si-nc based optical waveguide amplifier with the other on-board photonic integrated circuits for the future optical interconnect communication.

15.
Opt Express ; 18(9): 9525-30, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20588799

RESUMO

Mode-locking of semiconductor optical amplifier fiber laser (SOAFL) with 50 fs pulses by extracting the clock of an optical non-return-to-zero (NRZ) data injection is demonstrated. The efficiency of mode-locking in the SOAFL is improved by increasing the seeding power of the large-duty-cycle NRZ data from 3 to 8 dBm into the SOA driven at biased current of 350 mA. After linear dispersion compensation, the mode-locked SOAFL pulsewidth can be further shortened from 20 to 3 ps by increasing the DCF length up to 110 m. By using a booster the EDFA to enlarge the average power of mode-locked SOAFL pulse to 1.3 W, the shortest soliton pulse is occurred after propagating through a 12-m-long SMF. The amplified SOAFL pulse can be compressed to 50 fs after nonlinear compression with its spectral linewidth broadening to 64 nm. Nearly transform-limited time-bandwidth product of 0.436 and the maximum pulse compressing ratio of 400 are reported to date.

16.
Skull Base ; 18(6): 401-4, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19412410

RESUMO

Intranasal gliomas are challenging for several reasons. Their diagnosis may not be immediately obvious at presentation. It is important to exclude an intracranial extension, and for this some have suggested a craniotomy. We report a 9-day-old male infant in whom an intranasal glioma that mimicked an encephalocele was successfully excised by endoscopic approach after failure to excise it through a craniotomy. After more than a 5-year follow-up, the patient is still free from the disease. An endoscopic intranasal approach provides a safe and effective method for the management of nasal glioma and does not result in postoperative facial scaring or deformity. Endoscopic techniques provide excellent visualization and are preferable to the classic frontal craniotomy to excluding intracranial extension of nasal glioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...