Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(17): 22248-22255, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626353

RESUMO

The massive use of paper has resulted in significant negative impacts on the environment. Fortunately, recent progress has been made in the field of rewritable paper, which has great potential in solving the increasing demand for paper while minimizing its environmental footprint. In this work, we report a green and economic strategy to develop ink-free rewritable paper by introducing hydrochromic covalent organic frameworks (COFs) in paper and using water as the sole trigger. When exposed to water or acidic solvents, two kinds of imino COFs change their colors reversibly from red to black. Additionally, a new visible absorption band appears, indicating that it can be transformed into another structure reversibly. This reversibility may be due to the isomerization from the diiminol to an iminol/cisketoenamine and its inability to doubly tautomerize to a diketoenamine. Specifically, we prepared the rewritable paper by loading these two COFs onto filter paper by using the decompression filtration method. When exposed to water, the paper undergoes a color change from red to black, which shows promising potential for applications in water-jet printing. Additionally, there is no significant performance degradation after 20 uses and 10 days between, further highlighting their potential as rewritable papers. To further improve its uniformity, we take the interface polymerization strategy to yield highly crystalline and more compact membranes, which are then transferred to paper to prepare writable papers. Our research has opened up a way for the application of COFs as a water-based printing material.

2.
ACS Appl Mater Interfaces ; 16(12): 15096-15106, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478831

RESUMO

With the progress of forgery and decryption, the traditional encryption technology is apparent not enough, which strongly requires the development of advanced multidimensional encryption strategies and technologies. Photo-stimuli responsive fluorescent materials are promising as candidate materials for advanced information encryption. Here, we have reported new photo-stimuli responsive materials by encapsulating photochromic molecules spiropyrans (SPs) into naphthalimide-functionalized silica aerogels. By introducing different modification groups (dimethylamino) into 1,8-naphthalimide, we obtained two kinds of silica aerogels that emit blue and green colors. The naphthalimide-functionalized silica aerogels/dye composite exhibits a blue (dimethylamino-modified naphthalimide-functionalized silica aerogel showing green) emission from naphthalimide of silica aerogels at 450 nm (520 nm) and a red emission around 650 nm of SP. Under exposure to ultraviolet light, SP gradually transformed into the merocyanine (MC) form, and a strong absorption band appeared near 540 nm. At that time, the fluorescence resonance energy-transfer (FRET) process occurred between naphthalimide and the MC isomer. As the irradiation time is extended, the fluorescence color changes continuously from blue (green) to red through the FRET process. Using the time dependence of fluorescence, dynamic encryption patterns and multiple codes were successfully developed based on these functionalized silica aerogels. This work has provided important guidance for designing advanced information encryption materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...