Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 149: 107474, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805909

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high mortality lung disease. Although the antifibrotic drugs pirfenidone and nintedanib could slow the rate of lung function decline, the usual course of the condition is inexorably to respiratory failure and death. Therefore, new approaches and novel therapeutic drugs for the treatment of IPF are urgently needed. And the selective PDE4 inhibitor has in vivo and in vitro anti-fibrotic effects in IPF models. But the clinical application of most PDE4 inhibitors are limited by their unexpected and severe side effects such as nausea, vomiting, and diarrhea. Herein, structure-based optimizations of the natural product Moracin M resulted in a novel a novel series of 2-arylbenzofurans as potent PDE4 inhibitors. The most potent inhibitor L13 has an IC50 of 36 ± 7 nM with remarkable selectivity across the PDE families and administration of L13·citrate (10.0 mg/kg) exhibited comparable anti-pulmonary fibrosis effects to pirfenidone (300 mg/kg) in a bleomycin-induced IPF mice model, indicate that L13 is a potential lead for the treatment of IPF.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Fibrose Pulmonar Idiopática , Inibidores da Fosfodiesterase 4 , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/uso terapêutico , Animais , Relação Estrutura-Atividade , Camundongos , Estrutura Molecular , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Bleomicina , Relação Dose-Resposta a Droga , Camundongos Endogâmicos C57BL , Masculino , Benzofuranos/farmacologia , Benzofuranos/química , Benzofuranos/síntese química
2.
Plants (Basel) ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475528

RESUMO

The root traits and response strategies of plants play crucial roles in mediating interactions between plant root systems. Current research on the role of root exudates as underground chemical signals mediating these interactions has focused mainly on crops, with less attention given to desert plants in arid regions. In this study, we focused on the typical desert plant Haloxylon ammodendron and conducted a pot experiment using three root isolation methods (plastic film separation, nylon mesh separation, and no separation). We found that (1) as the degree of isolation increased, plant biomass significantly increased (p < 0.05), while root organic carbon content exhibited the opposite trend; (2) soil electrical conductivity (EC), soil total nitrogen (STN), soil total phosphorus (STP), and soil organic carbon (SOC) were significantly greater in the plastic film and nylon mesh separation treatments than in the no separation treatment (p < 0.05), and the abundance of Proteobacteria and Actinobacteriota was significantly greater in the plastic film separation treatment than in the no separation treatment (p < 0.05); (3) both plastic film and nylon mesh separations increased the secretion of alkaloids derived from tryptophan and phenylalanine in the plant root system compared with that in the no separation treatment; and (4) Pseudomonas, Proteobacteria, sesquiterpenes, triterpenes, and coumarins showed positive correlations, while both pseudomonas and proteobacteria were significantly positively correlated with soil EC, STN, STP, and SOC (p < 0.05). Aurachin D was negatively correlated with Gemmatimonadota and Proteobacteria, and both were significantly correlated with soil pH, EC, STN, STP, and SOC. The present study revealed strong negative interactions between the root systems of H. ammodendron seedlings, in which sesquiterpenoids, triterpenoids, coumarins, and alkaloids released by the roots played an important role in the subterranean competitive relationship. This study provides a deeper understanding of intraspecific interactions in the desert plant H. ammodendron and offers some guidance for future cultivation of this species in the northwestern region of China.

3.
Chem Biol Interact ; 385: 110654, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666442

RESUMO

In vivo and in vitro studies have confirmed that liquiritigenin (LQ), the primary active component of licorice, acts as an antitumor agent. However, how LQ diminishes or inhibits tumor growth is not fully understood. Here, we report the enzymatic inhibition of LQ and six other flavanone analogues towards AKR1Cs (AKR1C1, AKR1C2 and AKR1C3), which are involved in prostate cancer, breast cancer, and resistance of anticancer drugs. Crystallographic studies revealed AKR1C3 inhibition of LQ is related to its complementarity with the active site and the hydrogen bonds net in the catalytic site formed through C7-OH, aided by its nonplanar and compact structure due to the saturation of the C2C3 double bond. Comparison of the LQ conformations in the structures of AKR1C1 and AKR1C3 revealed the induced-fit conformation changes, which explains the lack of isoform selectivity of LQ. Our findings will be helpful for better understanding the antitumor effects of LQ on hormonally dependent cancers and the rational design of selective AKR1Cs inhibitors.

4.
J Med Chem ; 66(9): 6218-6238, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36880691

RESUMO

Nowadays, small-molecule drugs have become an indispensable part of tumor immunotherapy. Accumulating evidence has indicated that specifically blocking PGE2/EP4 signaling to induce robust antitumor immune response represents an attractive immunotherapy strategy. Herein, a 2H-indazole-3-carboxamide containing compound 1 was identified as a EP4 antagonist hit by screening our in-house small-molecule library. Systematic structure-activity relationship exploration leads to the discovery of compound 14, which displayed single-nanomolar EP4 antagonistic activity in a panel of cell functional assays, high subtype selectivity, and favorable drug-like profiles. Moreover, compound 14 profoundly inhibited the up-regulation of multiple immunosuppression-related genes in macrophages. Oral administration of compound 14, either as monotherapy or in combination with an anti-PD-1 antibody, significantly impaired tumor growth via enhancing cytotoxic CD8+ T cell-mediated antitumor immunity in a syngeneic colon cancer model. Thus, these results demonstrate the potential of compound 14 as a candidate for developing novel EP4 antagonists for tumor immunotherapy.


Assuntos
Neoplasias do Colo , Indazóis , Receptores de Prostaglandina E Subtipo EP4 , Humanos , Neoplasias do Colo/patologia , Imunoterapia , Prostaglandinas , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Transdução de Sinais , Indazóis/química , Indazóis/farmacologia
5.
J Environ Manage ; 325(Pt A): 116571, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308787

RESUMO

Elucidating the responses and potential functions of soil microbial communities during succession is important for understanding biogeochemical processes and the sustainable development of plant communities after environmental disturbances. However, studies of such dynamics during post-mining ecological restoration in alpine areas remain poorly understood. Microbial diversity, nitrogen, and phosphorus cycle functional gene potential in the Heishan mining area of Northwest China was studied, including primitive succession, secondary succession, and artificial succession disturbed by mining. The results revealed that: (1) The dominant bacteria in both categories (non-remediated and ecologically restored) of mining area rhizosphere soil were Proteobacteria, adopting the r strategy, whereas in naturally occurring soil outside the mining area, the dominant bacteria were actinomycetes and Acidobacteria, adopting the k strategy. Notably, mining perturbation significantly reduced the relative abundance of archaea. (2) After restoration, more bacterial network node connections were observed in mining areas than were originally present, whereas the archaeal network showed the opposite trend. (3) The networks of microbial genes related to nitrogen and phosphorus cycle potential differed significantly, depending on the succession type. Namely, prior to restoration, there were more phosphorus related functional gene network connections; these were also more strongly correlated, and the network was more aggregated. (4) Soil factors such as pH and NO3-N affected both the mining area remediation soil and the soil outside the mining area, but did not affect the soil of the original vegetation in the mining area. The changes in the structure and function of plant rhizosphere microorganisms after mining disturbance can provide a theoretical basis for the natural restoration of mining areas.


Assuntos
Minas de Carvão , Microbiota , Rizosfera , Solo , Archaea/genética , Fósforo , Nitrogênio , Microbiologia do Solo , Mineração
6.
Acta Pharm Sin B ; 12(3): 1351-1362, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530128

RESUMO

Scaffold hopping refers to computer-aided screening for active compounds with different structures against the same receptor to enrich privileged scaffolds, which is a topic of high interest in organic and medicinal chemistry. However, most approaches cannot efficiently predict the potency level of candidates after scaffold hopping. Herein, we identified potent PDE5 inhibitors with a novel scaffold via a free energy perturbation (FEP)-guided scaffold-hopping strategy, and FEP shows great advantages to precisely predict the theoretical binding potencies ΔG FEP between ligands and their target, which were more consistent with the experimental binding potencies ΔG EXP (the mean absolute deviations | Δ G FEP - Δ G EXP |  < 2 kcal/mol) than those ΔG MM-PBSA or ΔG MM-GBSA predicted by the MM-PBSA or MM-GBSA method. Lead L12 had an IC50 of 8.7 nmol/L and exhibited a different binding pattern in its crystal structure with PDE5 from the famous starting drug tadalafil. Our work provides the first report via the FEP-guided scaffold hopping strategy for potent inhibitor discovery with a novel scaffold, implying that it will have a variety of future applications in rational molecular design and drug discovery.

7.
Acta Pharm Sin B ; 12(2): 853-866, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256950

RESUMO

N 6-methyladenosine (m6A) modification is critical for mRNA splicing, nuclear export, stability and translation. Fat mass and obesity-associated protein (FTO), the first identified m6A demethylase, is critical for cancer progression. Herein, we developed small-molecule inhibitors of FTO by virtual screening, structural optimization, and bioassay. As a result, two FTO inhibitors namely 18077 and 18097 were identified, which can selectively inhibit demethylase activity of FTO. Specifically, 18097 bound to the active site of FTO and then inhibited cell cycle process and migration of cancer cells. In addition, 18097 reprogrammed the epi-transcriptome of breast cancer cells, particularly for genes related to P53 pathway. 18097 increased the abundance of m6A modification of suppressor of cytokine signaling 1 (SOCS1) mRNA, which recruited IGF2BP1 to increase mRNA stability of SOCS1 and subsequently activated the P53 signaling pathway. Further, 18097 suppressed cellular lipogenesis via downregulation of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and C/EBPß. Animal studies confirmed that 18097 can significantly suppress in vivo growth and lung colonization of breast cancer cells. Collectively, we identified that FTO can work as a potential drug target and the small-molecule inhibitor 18097 can serve as a potential agent against breast cancer.

8.
ACS Chem Biol ; 16(5): 857-863, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33955736

RESUMO

A challenge for sensors targeting specific enzymes of interest in their native environment for direct imaging is that they rationally exploit a highly selective fluorescent probe with a high binding affinity to provide real-time detection. Immunohistochemical staining, proteomic analysis, or recent enzymatic fluorescent probes are not optimal for tracking specific enzymes directly in living cells. Herein, we introduce the concept of designing a highly effective fluorescent probe (BVQ1814) targeting phosphodiesterase 10A with a highly potent affinity and a >1000-fold subfamily selectivity by gaining insights into the three-dimensional structural information of the active site of the catalytic pocket. BVQ1814 showed an outstanding binding affinity for PDE10A in vitro and specifically detected PDE10A in living cells, indicating that most PDE10A was probably distributed in the lysosomes. We validated the PDE10A distribution in stable mCherry-PDE10A-overexpressing HepG2 cells. This probe delineated the profile of PDE10A in tissue sections and exhibited a remarkable therapeutic effect as a PDE10A inhibitor for treating pulmonary arterial hypertension. This concept will open up a new avenue for designing a highly effective fluorescent probe for tracking receptor proteins by taking full advantage of the structural information in the ligand-binding pocket of the target of interest.


Assuntos
Corantes Fluorescentes/química , Lisossomos/química , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/química , Catálise , Domínio Catalítico , Células HeLa , Células Hep G2 , Humanos , Lisossomos/ultraestrutura , Imagem Óptica , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/ultraestrutura , Ligação Proteica , Conformação Proteica , Proteômica
9.
PLoS One ; 16(1): e0245249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428688

RESUMO

Species dissimilarity (beta diversity) primarily reflects the spatio-temporal changes in the species composition of a plant community. The correlations between ß diversity and environmental factors and spatial distance can be used to explain the magnitudes of environmental filtering and dispersal. However, little is known about the relative roles and importance of neutral and niche-related factors in the assemblage of plant communities with different life forms in deserts. We found that in desert ecosystems, the ß diversity of herbaceous plants was the highest, followed by that of shrubs and trees. The changes in the ß diversity of herbs and shrubs had stronger correlations with the environment, indicating that community aggregation was strongly affected by niche processes. The soil water content and salt content were the key environmental factors affecting species distributions of the herb and shrub layers, respectively. Spatial distance explained a larger amount of the variation in tree composition, indicating that dispersal limitation was the main factor affecting the construction of the tree layer community. The results suggest that different life forms may determine the association between organisms and the environment. These findings suggest that the spatial patterns of plant community species in the Ebinur Lake desert ecosystem are the result of the combined effects of environmental filtering and dispersal limitation.


Assuntos
Biodiversidade , Clima Desértico , Plantas , China , Geografia , Especificidade da Espécie
10.
RSC Adv ; 11(51): 31967-31971, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35495504

RESUMO

Small molecule fluorescent probes provide a powerful labelling technology to enhance our understanding of particular proteins. However, the discovery of a proper fluorescent probe for detecting PDE5 is still a challenge due to the highly conservative structure of the catalytic domain in the phosphodiesterase (PDE) families. Herein, we identified probes based on the key amino residues in the ligand binding pocket of PDE5 and catalytic-site-fluorescent probes PCO2001-PCO2003 were well designed and synthesized. Among them, PCO2003 exhibited extraordinary fluorescence properties and the ability to be applied to PDE5 visualization in live cells as well as in pulmonary tissue slices, demonstrating the location and expression level of PDE5 proteins. Overall, the environment-sensitive "turn-on" probe is economical, convenient and rapid for PDE5 imaging, implying that the catalytic-site-fluorescent probe will have a variety of future applications in pathological diagnosis as well as drug screening.

11.
Acta Pharm Sin B ; 10(12): 2339-2347, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354505

RESUMO

Optimization efforts were devoted to discover novel PDE10A inhibitors in order to improve solubility and pharmacokinetics properties for a long-term therapy against pulmonary arterial hypertension (PAH) starting from the previously synthesized inhibitor A. As a result, a potent and highly selective PDE10A inhibitor, 14·3HCl (half maximal inhibitory concentration, IC50 = 2.8 nmol/L and >3500-fold selectivity) exhibiting desirable solubility and metabolic stability with a remarkable bioavailability of 50% was identified with the aid of efficient methods of binding free energy predictions. Animal PAH studies showed that the improvement offered by 14·3HCl [2.5 mg/kg, oral administration (p.o.)] was comparable to tadalafil (5.0 mg/kg, p.o.), verifying the feasibility of PDE10A inhibitors for the anti-PAH treatment. The crystal structure of the PDE10A-14 complex illustrates their binding pattern, which provided a guideline for rational design of highly selective PDE10A inhibitors.

12.
Proc Natl Acad Sci U S A ; 117(44): 27381-27387, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33051297

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and thus repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a restraint energy distribution (RED) function, making the practical FEP-ABFE-based virtual screening of the existing drug library possible. As a result, out of 25 drugs predicted, 15 were confirmed as potent inhibitors of SARS-CoV-2 Mpro The most potent one is dipyridamole (inhibitory constant Ki = 0.04 µM) which has shown promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki = 0.36 µM) and chloroquine (Ki = 0.56 µM) were also found to potently inhibit SARS-CoV-2 Mpro We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Reposicionamento de Medicamentos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , COVID-19 , Cloroquina/farmacologia , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Cisteína Endopeptidases , Dipiridamol/farmacologia , Humanos , Hidroxicloroquina/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2
13.
J Med Chem ; 63(6): 3370-3380, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32115956

RESUMO

To validate PDE4 inhibitors as novel therapeutic agents against vascular dementia (VaD), 25 derivatives were discovered from the natural inhibitor α-mangostin (IC50 = 1.31 µM). Hit-to-lead optimization identified a novel and selective PDE4 inhibitor 4e (IC50 = 17 nM), which adopted a different binding pattern from PDE4 inhibitors roflumilast and rolipram. Oral administration of 4e at a dose of 10 mg/kg exhibited remarkable therapeutic effects in a VaD model and did not cause emesis to beagle dogs, indicating its potential as a novel anti-VaD agent.


Assuntos
Demência Vascular/tratamento farmacológico , Inibidores da Fosfodiesterase 4/uso terapêutico , Xantonas/uso terapêutico , Aminopiridinas/metabolismo , Animais , Benzamidas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ciclopropanos/metabolismo , Cães , Desenho de Fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/metabolismo , Inibidores da Fosfodiesterase 4/farmacocinética , Ligação Proteica , Rolipram/metabolismo , Rolipram/uso terapêutico , Relação Estrutura-Atividade , Vômito/prevenção & controle , Xantonas/síntese química , Xantonas/metabolismo , Xantonas/farmacocinética
14.
ACS Chem Neurosci ; 11(7): 1058-1071, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105440

RESUMO

Phosphodiesterase 10 (PDE10) inhibitors have received much attention as promising therapeutic agents for central nervous system (CNS) disorders such as schizophrenia and Huntington's disease. Recently, a hit compound 1 with a novel chromone scaffold has shown moderate inhibitory activity against PDE10A (IC50 = 500 nM). Hit-to-lead optimization has resulted in compound 3e with an improved inhibitory activity (IC50 = 6.5 nM), remarkable selectivity (>95-fold over other PDEs), and good metabolic stability (RLM t1/2 = 105 min) by using an integrated strategy (molecular modeling, chemical synthesis, bioassay, and cocrystal structure). The cocrystal structural information provides insights into the binding pattern of 3e in the PDE10A catalytic domain to highlight the key role of the halogen and hydrogen bonds toward Tyr524 and Tyr693, respectively, thereby resulting in high selectivity against other PDEs. These new observations are of benefit for the rational design of the next generation PDE10 inhibitors for CNS disorders.


Assuntos
Ligação de Hidrogênio/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Descoberta de Drogas/métodos , Humanos , Modelos Moleculares , Esquizofrenia/tratamento farmacológico , Relação Estrutura-Atividade
15.
Acta Pharm Sin B ; 10(2): 327-343, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32082977

RESUMO

Our recent studies demonstrated that the natural product nobiletin (NOB) served as a promising multidrug resistance (MDR) reversal agent and improved the effectiveness of cancer chemotherapy in vitro. However, low aqueous solubility and difficulty in total synthesis limited its application as a therapeutic agent. To tackle these challenges, NOB was synthesized in a high yield by a concise route of six steps and fourteen derivatives were synthesized with remarkable solubility and efficacy. All the compounds showed improved sensitivity to paclitaxel (PTX) in P-glycoprotein (P-gp) overexpressing MDR cancer cells. Among them, compound 29d exhibited water solubility 280-fold higher than NOB. A drug-resistance A549/T xenograft model showed that 29d, at a dose of 50 mg/kg co-administered with PTX (15 mg/kg), inhibited tumor growth more effective than NOB and remarkably increased PTX concentration in the tumors via P-gp inhibition. Moreover, Western blot experiments revealed that 29d inhibited expression of NRF2, phosphorylated ERK and AKT in MDR cancer cells, thus implying 29d of multiple mechanisms to reverse MDR in lung cancer.

16.
J Med Chem ; 62(7): 3707-3721, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30888810

RESUMO

Pulmonary arterial hypertension (PAH) causes pathological increase in pulmonary vascular resistance, leading to right-heart failure and eventual death. Previously, phosphodiesterase-10 (PDE10) was reported to be a promising target for PAH based on the studies with a nonselective PDE inhibitor papaverine, but little progress has been made to confirm the practical application of PDE10 inhibitors. To validate whether PAH is ameliorated by PDE10 inhibition rather than other PDE isoforms, here we report an integrated strategy to discover highly selective PDE10 inhibitors as chemical probes. Structural optimization resulted in a PDE10 inhibitor 2b with subnanomolar affinity and good selectivity of >45 000-fold against other PDEs. The cocrystal structure of the PDE10-2b complex revealed an important H-bond interaction between 2b and Tyr693. Finally, compound 2b significantly decreased the arterial pressure in PAH rats and thus validated the potential of PDE10 as a novel anti-PAH target. These findings suggest that PDE10 inhibition may be a viable treatment option for PAH.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Animais , Cristalografia por Raios X , Humanos , Masculino , Simulação de Dinâmica Molecular , Músculo Liso/efeitos dos fármacos , Músculo Liso/enzimologia , Diester Fosfórico Hidrolases/química , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ligação Proteica , Conformação Proteica , Ratos
17.
J Med Chem ; 62(4): 2099-2111, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30689375

RESUMO

Accurate prediction of absolute protein-ligand binding free energy could considerably enhance the success rate of structure-based drug design but is extremely challenging and time-consuming. Free energy perturbation (FEP) has been proven reliable but is limited to prediction of relative binding free energies of similar ligands (with only minor structural differences) in binding with a same drug target in practical drug design applications. Herein, a Gaussian algorithm-enhanced FEP (GA-FEP) protocol has been developed to enhance the FEP simulation performance, enabling to efficiently carry out the FEP simulations on vanishing the whole ligand and, thus, predict the absolute binding free energies (ABFEs). Using the GA-FEP protocol, the FEP simulations for the ABFE calculation (denoted as GA-FEP/ABFE) can achieve a satisfactory accuracy for both structurally similar and diverse ligands in a dataset of more than 100 receptor-ligand systems. Further, our GA-FEP/ABFE-guided lead optimization against phosphodiesterase-10 led to the discovery of a subnanomolar inhibitor (IC50 = 0.87 nM, ∼2000-fold improvement in potency) with cocrystal confirmation.


Assuntos
Inibidores Enzimáticos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Termodinâmica , Algoritmos , Animais , Sítios de Ligação , Desenho de Fármacos , Inibidores Enzimáticos/química , Humanos , Ligantes , Simulação de Dinâmica Molecular , Diester Fosfórico Hidrolases/química , Ligação Proteica , Ratos
18.
Bioorg Med Chem ; 26(22): 5934-5943, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429100

RESUMO

AKR1C3 is a promising therapeutic target for castration-resistant prostate cancer. Herein, an evaluation of in-house library discovered substituted pyranopyrazole as a novel scaffold for AKR1C3 inhibitors. Preliminary SAR exploration identified its derivative 19d as the most promising compound with an IC50 of 0.160 µM among the 23 synthesized molecules. Crystal structure studies revealed that the binding mode of the pyranopyrazole scaffold is different from the current inhibitors. Hydroxyl, methoxy and nitro group at the C4-phenyl substituent together anchor the inhibitor to the oxyanion site, while the core of the scaffold dramatically enlarges but partially occupies the SP pockets with abundant hydrogen bond interactions. Strikingly, the inhibitor undergoes a conformational change to fit AKR1C3 and its homologous protein AKR1C1. Our results suggested that conformational changes of the receptor and the inhibitor should both be considered during the rational design of selective AKR1C3 inhibitors. Detailed binding features obtained from molecular dynamics simulations helped to finally elucidate the molecular basis of 6-amino-4-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles as AKR1C3 inhibitors, which would facilitate the future rational inhibitor design and structural optimization.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Nitrilas/farmacologia , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
19.
J Med Chem ; 61(18): 8468-8473, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30148362

RESUMO

To further explore the structure-activity relationship around the chromeno[2,3- c]pyrrol-9(2 H)-one scaffold, 19 derivatives as inhibitors against PDE5 were discovered. The most potent inhibitor 3 has an IC50 of 0.32 nM with remarkable selectivity and druglike profile. Oral administration of 3 (1.25 mg/kg) caused comparable therapeutic effects to sildenafil (10.0 mg/kg) against pulmonary arterial hypertension. Further, different binding patterns from sildenafil were revealed in cocrystal structures, which provide structural templates for discovery of highly potent PDE5 inhibitors.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Microssomos Hepáticos/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/administração & dosagem , Inibidores da Fosfodiesterase 5/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Administração Oral , Animais , Cristalografia por Raios X , Canal de Potássio ERG1/antagonistas & inibidores , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/patologia , Modelos Moleculares , Estrutura Molecular , Inibidores da Fosfodiesterase 5/química , Conformação Proteica , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Relação Estrutura-Atividade
20.
Front Chem ; 6: 167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868568

RESUMO

Phosphodiesterase 10 is a promising target for the treatment of a series of central nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant defense systems as a universal condition in neurodegenerative disorders is widely studied as a potential therapy for CNS diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). To discover multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant activities were designed and synthesized. Nine out of 13 designed compounds showed good PDE10 inhibition at the concentration of 1.0 µM. Among these compounds, eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical absorbance capacity) value above 1.0. Molecular docking was performed for better understanding of the binding patterns of these compounds with PDE10. Compound 11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity may serve as a lead for the further modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA