Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(55): 93426-93437, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212161

RESUMO

The major virulence factor of enterohemorrhagic Escherichia coli in infections is its ability to cause attaching and effacing lesions in enterocytes, as well as to produce Shiga toxins. To clarify the pathogenic mechanism and host innate immune responses of enterohemorrhagic Escherichia coli in rabbits, experimental infections with TS and MY strains were conducted. Among the results, although the MY strain's pathogenicity was stronger than the TS, typical symptoms were observed in both groups of bacterial-infected rabbits. Pathological changes in the heart, liver, and spleen of rabbits infected with the MY strain were more severe than those infected with the TS strain, pro-inflammatory cytokines IL-1ß, IL-6, IL-8, IFN-γ, and TNF-α were induced by both strains, and α- and ß-defensin were significantly upregulated at 3 d postinfection. Moreover, in the spleen, the MY strain induced greater expressions of α- and ß-defensins than did the TS strain. However, in the liver, the TS strain induced greater expressions of α- and ß-defensins than did the MY strain. Most likely, different replications of the MY and TS strains in the liver and spleen induced different host immune responses. Altogether, the findings provide new insights into the occurrence and development of enterohemorrhagic Escherichia coli-mediated diseases in rabbits.

2.
Front Immunol ; 8: 1278, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067026

RESUMO

Nucleotide-binding oligomerization domain 1 (NOD1) is the most prominent of all NOD-like receptors, which in the mammalian innate immune system, serve as intracellular receptors for pathogens and endogenous molecules during tissue injury. From rabbit kidney cells, we cloned rabbit NOD1 (rNOD1) and identified an N-terminal caspase activation and recruitment domain, a central NACHT domain, and C-terminal leucine-rich repeat domains. rNOD1 was expressed in all tested tissues; infection with Escherichia coli induced significantly higher expression in the spleen, liver, and kidney compared to other tissues. The overexpression of rNOD1 induced the expression of proinflammatory cytokines Il1b, Il6, Il8, Ifn-γ, and Tnf and defensins, including Defb124, Defb125, Defb128, Defb135, and Np5 via activation of the nuclear factor (NF)-κB pathway. Overexpression of rNOD1 inhibited the growth of E. coli, whereas knockdown of rNOD1 or inhibition of the NF-κB pathway promoted the growth of E. coli. rNOD1 colocalized with LC3, upregulated autophagy pathway protein LC3-II, and increased autolysosome formation in RK-13 cells infected with E. coli. In summary, our results explain the primary signaling pathway and antibacterial ability of rNOD1, as well as the induction of autophagy that it mediates. Such findings suggest that NOD1 could contribute to therapeutic strategies such as targets of new vaccine adjuvants or drugs.

3.
Front Immunol ; 8: 354, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424690

RESUMO

Probiotics such as Lactobacillus and Bifidobacterium have been successfully used to promote growth and prevent diseases. Previous reports have demonstrated that Bacillus subtilis (B. subtilis) was a potential probiotic for animals. In this research, 180 B. subtilis were isolated from the soil, identified, and investigated in vitro. Furthermore, five B. subtilis were selected and mixed to investigate their effect on growth performance, immune response, intestine microbiota, and disease resistance in rabbits. Rabbits with a diet of 106 CFU g-1 mixed B. subtilis exhibited the best growth performance and higher serum IgG and IgA than controls (P < 0.05). Moreover, dairy with B. subtilis can promote the balance of intestinal flora. The major proinflammatory factor and ß-defensin were upregulated compared with the controls. After 7 weeks of feeding, the survival rate of the rabbits fed with B. subtilis was significantly higher than those in the control groups postinfected with Escherichia coli. At the same time, this study detected higher expression of ß-defensin and reduced bacteria contents of the heart and cecal contents from the diet mixed with B. subtilis compared with the control groups. In conclusion, dietary supplementation with B. subtilis for rabbits could improve growth performance, intestinal homeostasis, and immune organ index and enhance innate immune response as well as disease resistance. These findings showed that the induction of ß-defensin by B. subtilis might be an interesting new therapeutic strategy to strengthen innate defense mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA