Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36363033

RESUMO

Earthquakes worldwide highlight the seismic vulnerability of reinforced concrete (RC) bridge columns. RC bridges are likely to collapse or lose service function due to damage to the bridge columns from strong earthquakes. Rapid repair of RC bridge columns is of great significance for maintaining traffic lines for emergency rescue work after earthquakes. In this study, an improved rapid repair method was developed to restore the bearing capacity of a damaged precast column after earthquake damage. A cyclic loading test was performed to simulate the seismic loading. The original column and the repaired column were both tested. The test results showed that the bearing capacity of the repaired columns was increased by 8%, and the energy dissipation capacity was 53% higher than that of the original column. The ductility decreased because the test for the repaired specimen ended in advance. The initial stiffness of the repaired columns was reduced, but the stiffness was significantly developed in the later loading stage. The rapid repair method proposed in this study exhibited an excellent effect on restoring the seismic resistance of the damaged columns.

2.
Materials (Basel) ; 15(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36233892

RESUMO

In order to improve the cracking performance in the negative moment region of composite continuous girder bridges with corrugated webs, engineered cementitious composite (ECC) is used instead of conventional normal concrete (NC). Web and concrete types are used as the main research parameters in experiments. The test results indicate that steel-ECC specimens have a higher flexural load capacity and stiffness than steel-NC specimens. The cracks of steel-ECC specimens are characterised by small width and dense distribution. Nonlinear finite element models are established and verified by experimental results. The simulated load-displacement curves are similar to the experimental ones, and the models have a high degree of accuracy. The ECC slab strength, thickness and width are used as parameters for the investigation to analyse the effect of the ECC slab on the flexural bearing capacity of composite girders. Compared with the results of calculations according to the code, the bearing capacity obtained from the parametric analysis is higher. It suggests that the contribution of the ECC slab needs to be considered when calculating the bearing capacity of the steel-ECC composite girder with corrugated webs.

3.
Materials (Basel) ; 15(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295302

RESUMO

The difference between the shear performances of Perfobond Leiste (PBL) shear connectors embedded in steel fiber-reinforced cementitious composite (SFRCC) structure and normal strength concrete (NC) structure was investigated by push-out tests and finite element (FE) simulations. Push-out tests were carried out on nine steel-SFRCC specimens and nine steel-NC specimens. The mechanical behavior of the PBL shear connector was examined according to the failure modes, load-slip curves, and strain distribution laws of the push-out specimens. Experimental results revealed that the extension of cracks in SFRCC was hindered by steel fibers, and the number and width of cracks in SFRCC were smaller than those in NC. The failure mode of the steel-SFRCC specimens and the single-hole steel-NC specimens was the shear failure of the penetrating reinforcement, whereas that of the multi-hole NC specimens was concrete slab cracking. The ultimate shear bearing capacity of PBL shear connectors in the steel-SFRCC specimens was 47.8% greater than that in the steel-NC specimens. Furthermore, an FE model verified by the test results was established to conduct parametric analyses. It was found that the hole diameter and thickness of the steel plate and the yield strength of the penetrating rebar greatly affected the shear bearing capacity of PBL shear connectors. Finally, based on the experimental and FE simulation results, an expression for calculating the ultimate shear bearing capacity of PBL shear connectors in the steel-SFRCC composite structure was developed by considering the bearing effects of concrete dowels, penetrating rebars, and end parts.

4.
Materials (Basel) ; 15(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806789

RESUMO

To investigate the shear performance and failure mechanism of stud shear connectors in steel fiber-reinforced cementitious composite (SFRCC) beams, six steel-SFRCC and six steel-normal strength concrete (NC) push-out specimens with two heights (80 mm, 120 mm) and three diameters (14 mm, 18 mm, 22 mm) of stud connectors were prepared. The experimental results revealed that the stud shearing failure was the main failure mode of all push-out specimens. In comparison to the steel-NC specimens, the development of cracks in the SFRCC beams was efficiently restrained due to the existence of high-strength steel fibers added to the normal concrete. The shear resistance and stiffness of studs in the steel-SFRCC beams were, respectively, 22.3% and 15.1% greater than those in the steel-NC specimens; however, their ductility was reduced, and the stud shear connectors failed in advance. The finite element (FE) model was developed and verified by push-out test results. FE analysis results indicated that the shear resistance of stud shear connectors was significantly improved with the increase in the concrete compressive strength, the stud diameter and tensile strength, whereas the aspect ratio of studs had a small impact on the ultimate resistance of stud shear connectors. Based on the as-obtained push-out experiment and FE analysis results, empirical formulas were presented to predict the load-slip curves and ultimate shear resistance of stud shear connectors in the steel-SFRCC specimens, and higher accuracy and a wider application range were obtained than with previous formulas.

5.
Materials (Basel) ; 14(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204313

RESUMO

Perfobond rib (PBL) shear connectors, made up of the perforated steel plates with the penetrating rebars passing through the holes, are extensively adopted in steel-concrete composite structures for their excellent performance. The adequate understanding of mechanical properties for PBL connectors is of great significance for their reasonable design. In this study, a push out experiment, including 12 specimens with the parameters of concrete strength, diameter of penetrating rebars and the number of holes on perforated steel plate, was performed to explore the mechanical behavior of PBL connectors with steel fiber high strength concrete (SFHSC). The experimental results showed that the shear capacity of the PBL connectors increased with the increase in concrete strength, diameter of the penetrating rebars and the number of holes. Furthermore, a general prediction formula for the shear capacity of PBL connectors was developed, which considers the shear contribution of concrete dowels, concrete end-bearing, interfacial bonding between the perforated steel plates and concrete and the penetrating rebars as well as the enhancement effect of steel fibers. The prediction results of the equation are in good agreement with the experimental data and could provide a reference for the design of PBL connectors.

6.
Materials (Basel) ; 14(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067455

RESUMO

In this research, high strength fiber reinforced concrete (HSFRC) was used to replace the normal strength concrete (NSC) in steel-concrete composite beams to improve their working performance, which might change the static performance of stud connectors. Firstly, push-out tests were conducted to investigation on the static performance of stud connectors in steel-HSFRC composite beams and compared with steel-NSC composite beams. Studs of 8 sizes, 13 mm, 16 mm, 19 mm and 22 mm in diameter and 80 mm and 120 mm in height were adopted to study the influence of stud dimension. The test phenomenon shown that the crack resistance of HSFRC was better than that of NSC, and there were some splitting cracks on NSC slabs whereas no visible cracks on HSFRC slabs when specimens failed. Next, the load-slip curves of studs were analyzed and a typical load-slip curve was proposed which was divided into four stages. In addition, the effects of test parameters were analyzed according to the characteristic points of load-slip curve. Compared with NSC slab, HSFRC slab could provide greater restraining force to the studs, which improved the shear capacity and stiffness of studs while suppressed the ductility of studs. The shear capacity, stiffness and ductility of studs would significantly increase with the increasement of stud diameter and the studs with large diameter were more suitable for steel-HSFRC composite beams. The stud height had no obvious influence on the static performance of studs. Finally, based on the test results, the empirical formulas for load-slip curve and shear capacity of stud connectors embedded in HSFRC were developed which considered the influence factors more comprehensively and had better accuracy and applicability than previous formulas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...