Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400520, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733234

RESUMO

Recently, researchers have been exploring the use of dynamic covalent bonds (DCBs) in the construction of exchangeable liquid crystal elastomers (LCEs) for biomimetic actuators and devices. However, a significant challenge remains in achieving LCEs with both excellent dynamic properties and superior mechanical strength and stability. In this study, a diacrylate-functionalized monomer containing dynamic hindered urea bonds (DA-HUB) is employed to prepare exchangeable LCEs through a self-catalytic Michael addition reaction. By incorporating DA-HUB, the LCE system benefits from DCBs and hydrogen bonding, leading to materials with high mechanical strength and a range of dynamic properties such as programmability, self-healing, and recyclability. Leveraging these characteristics, bilayer LCE actuators with controlled reversible thermal deformation and outstanding dimensional stability are successfully fabricated using a simple welding method. Moreover, a biomimetic triangular plum, inspired by the blooming of flowers, is created to showcase reversible color and shape changes triggered by light and heat. This innovative approach opens new possibilities for the development of biomimetic and smart actuators and devices with multiple functionalities.

2.
Adv Mater ; 36(19): e2312938, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320218

RESUMO

Single-component organic solar cells (SCOSCs) with covalently bonding donor and acceptor are becoming increasingly attractive because of their superior stability over traditional multicomponent blend organic solar cells (OSCs). Nevertheless, the efficiency of SCOSCs is far behind the state-of-the-art multicomponent OSCs. Herein, by combination of the advantages of three-component and single-component devices, this work reports an innovative three-in-one strategy to boost the performance of SCOSCs. In this three-in-one strategy, three independent components (PM6, D18, and PYIT) are covalently linked together to create a new single-component active layer based on ternary conjugated block copolymer (TCBC) PM6-D18-b-PYIT by a facile polymerization. Precisely manipulating the component ratios in the polymer chains of PM6-D18-b-PYIT is able to broaden light utilization, promote charge dynamics, optimize, and stabilize film morphology, contributing to the simultaneously enhanced efficiency and stability of the SCOSCs. Ultimately, the PM6-D18-b-PYIT-based device exhibits a power conversion efficiency (PCE) of 14.89%, which is the highest efficiency of the reported SCOSCs. Thanks to the aggregation restriction of each component and chain entanglement in the three-in-one system, the PM6-D18-b-PYIT-based SCOSC displays significantly higher stability than the corresponding two-component (PM6-D18:PYIT) and three-component (PM6:D18:PYIT). These results demonstrate that the three-in-one strategy is facile and promising for developing SCOSCs with superior efficiency and stability.

3.
Chem Commun (Camb) ; 60(17): 2361-2364, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38317619

RESUMO

Acceptor-only oligomers are developed as guest components to construct oligomer-assisted active layers for high performance organic solar cells. Due to the high planarity and structural similarity with the host polymer donor, BDD-based acceptor-only oligomers formed an alloy phase with PM6 and optimized the phase morphology effectively, achieving a stable device displaying 18% efficiency.

4.
Small ; 20(21): e2310125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100305

RESUMO

The solution-processed zinc oxide (ZnO) electron transport layer (ETL) always exhibits ubiquitous defects, and its photocatalytic activity is detrimental for the organic solar cell (OSC) to achieve high efficiency and stability. Herein, an organic dye molecule, PDINN-S is introduced, to dope ZnO, constructing a hybrid ZnO:PDINN-S ETL. This hybrid ETL exhibits improved electron mobility and conductivity, particularly post-light exposure. The catalytic activity of ZnO is also effectively suppressed.Consequently, the efficiency and photo-stability of inverted non-fullerene OSCs are synergistically enhanced. The devices based on PM6:Y6/PM6:BTP-eC9 active layer with ZnO:PDINN-S as ETL give impressive power conversion efficiencies (PCEs) of 16.78%/17.59%, significantly higher than those with pure ZnO as ETL (PCEs = 15.31%/16.04%). Moreover, ZnO:PDINN-S-based device shows exceptional long-term stability under continuous AM 1.5G illumination (T80 = 1130 h) , overwhelming the reference device (T80 = 455 h). In addition, Incorporating PDINN-S into ZnO alleviate mechanical stress within the inorganic lattice, making ZnO:PDINN-S ETL more suitable for the fabrication of flexible devices. Overall, doping ZnO with organic dye molecules offers an innovative strategy for developing multifunctional and efficient hybrid ETL of the non-fullerene OSCs with excellent efficiency and photo-stability.

5.
Angew Chem Int Ed Engl ; 62(39): e202308267, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37539636

RESUMO

Single-component organic solar cells (SCOSCs) based on conjugated block copolymers (CBCs) by covalently bonding a polymer donor and polymer acceptor become more and more appealing due to the formation of a favorable and stable morphology. Unfortunately, a deep understanding of the effect of the assembly behavior caused by the sequence structure of CBCs on the device performance is still missing. Herein, from the aspect of manipulating the sequence length and distribution regularity of CBCs, we synthesized a series of new CBCs, namely D18(20)-b-PYIT, D18(40)-b-PYIT and D18(60)-b-PYIT by two-pot polymerization, and D18(40)-b-PYIT(r) by traditional one-pot method. It is observed that precise manipulation of sequence length and distribution regularity of the polymer blocks fine-tunes the self-assembly of the CBCs, optimizes film morphology, improves optoelectronic properties, and reduces energy loss, leading to simultaneously improved efficiency and stability. Among these CBCs, the D18(40)-b-PYIT-based device achieves a high efficiency of 13.4 % with enhanced stability, which is an outstanding performance among SCOSCs. Importantly, the regular sequence distribution and suitable sequence length of the CBCs enable a facile film-forming process of the printed device. For the first time, the blade-coated large-area rigid/flexible SCOSCs are fabricated, delivering an impressive efficiency of 11.62 %/10.73 %, much higher than their corresponding binary devices.

6.
Small ; 19(49): e2304655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37590396

RESUMO

Developing efficient and low-cost noble-free metal electrocatalysts is an urgent requirement. Herein, a one-step, solid-state template-assisted method for fabricating isolated half-metallic diatomic M, Zn─N─C (M═Fe, Co, and Ni) catalysts is reported. In particular, the fabricated Fe, Zn─N─C structure exhibits superior oxygen reduction reaction capabilities with a half-wave potential of 0.867 V versus RHE. The Mossbauer spectra reveal that the Fe, Zn─N─C half-metallic diatomic catalyst has a large proportion of the D2 site (ferrous iron with a medium spin state). Density functional theory (DFT) reveals that in Fe, Zn─N─C structures, the zinc sites play a unique role in accelerating the protonation process of O2 in ORR. In assembled zinc-air batteries, a maximum power density of 138 mW cm-2 and a capacity of 748 mAh g zn-1 can be obtained. This work fabricates a series of efficient M, Zn─N─C diatomic electrocatalysts, and the developed solid-state reaction method can hopefully apply in other energy conversion and storage fields.

7.
J Hazard Mater ; 459: 132066, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37467608

RESUMO

Thiacloprid (THI) has accumulated significantly in agricultural soil. Herein, a novel approach to removing THI was explored by straw biochar-loaded iron and manganese oxides (FeMn@BC) to activate the persulfate (PS). The factors influencing the removal of 5 mg kg-1 THI from the soil by FeMn@BC/PS were investigated, including FeMn@BC dosing, PS dosing, temperature, and soil microorganisms. The feasibility was demonstrated by the 75.22% removal rate of THI with 3% FeMn@BC and 2% PS at 7 days and a 92.50% removal rate within 60 days. Compared to the THI, NH4+-N and available potassium were 3.96 and 3.25 times, and urease and phosphatase activities were increased by 22.54% and 33.28% in the FeMn@BC/PS at the 15 days, respectively. THI was found to seriously alter the structure of the genus in the 15 days by 16 S rRNA analysis; however, the FeMn@BC/PS group alleviated the damage, compared to the THI with 658 more operational taxonomic units. Actinobacteriota accounted for 51.48% of the microbial community in the FeMn@BC/PS group after 60 days, possibly converting transition products of THI into smaller molecules. This article provides a novel insight into advanced oxidative remediation of soils.


Assuntos
Ferro , Poluentes do Solo , Ferro/química , Manganês , Solo/química , Carvão Vegetal/química , Óxidos , Poluentes do Solo/análise
8.
Sci Total Environ ; 902: 165899, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524171

RESUMO

Photocatalytic upcycling of plastic waste is a promising approach to relieving pressure caused by solid waste, but the rational design of novel efficient photocatalysts remains a challenge. Herein, we utilize subnano-sized platinum (Pt)-based photocatalysts for plastic upcycling. A solution plasma strategy is developed to fabricate Pt-decorated Bi12O17Cl2 (SP-BOC). The Pt in an oxidant state and oxygen vacancies optimize the electronic structure for fast charge transfer. As a result, SP-BOC displays high performance for upcycling polyvinyl chloride (PVC) and polylactic acid (PLA) into acetic acid and formic acid, with yield rate and selectivity of 6.07 mg g-1cat. h-1 and 94 %, and 47.43 mg g-1cat. h-1 and 55.1 %, respectively. In addition, the dichlorination efficiency of PVC reaches 78.1 % within 10 h reaction, effectively reducing the environmental hazards associated with PVC waste disposal treatments. This research provides insight into the effective conversion of plastics into high-value chemicals, contributing to the reduction of carbon and toxic emissions in a practical and meaningful way, and offering a useful way for solving challenges of waste management and environmental sustainability.

9.
Prev Med Rep ; 34: 102275, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37334210

RESUMO

A Weight Management Program (WMP) is a critical and promising approach to losing excess weight and maintaining a healthy lifestyle for obese/overweight people. This study used the RE-AIM framework to retrospectively evaluate a WeChat-based workplace WMP that include low- and high-intensity interventions - self-management (SM) and intensive support (IS) - designed for employees with varying levels of health risk at a Chinese company. Both interventions incorporated with a variety of m-health technologies and behavioral strategies. While the IS group additionally received personalized feedback on diet record and intensive social support. Approximately 26% of all overweight/obese employees in the company enrolled in the program. Both groups lost a significant amount of weight at the endpoint (P < 0.001). In comparison to the SM group, the IS group had significantly higher level of compliance with self-monitoring. At six-month, 67% of individuals reported no additional weight gain. The WeChat-based WMP has received widespread praise from program participants and intervention providers in spite of difficulties encountered. This comprehensive and meticulous evaluation revealed both the strengths and weaknesses of the program, which will assist in improving implementation and balancing the cost and effectiveness of online WMP.

10.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372941

RESUMO

Plants have evolved diverse strategies to accommodate saline environments. More insights into the knowledge of salt stress regulatory pathways will benefit crop breeding. RADICAL-INDUCED CELL DEATH 1 (RCD1) was previously identified as an essential player in salt stress response. However, the underlying mechanism remains elusive. Here, we unraveled that Arabidopsis NAC domain-containing protein 17 (ANAC017) acts downstream of RCD1 in salt stress response, and its ER-to-nucleus transport is triggered by high salinity. Genetic and biochemical evidence showed that RCD1 interacts with transmembrane motif-truncated ANAC017 in the nucleus and represses its transcriptional activity. Transcriptome analysis revealed that genes associated with oxidation reduction process and response to salt stress are similarly dysregulated in loss-of-function rcd1 and gain-of-function anac017-2 mutants. In addition, we found that ANAC017 plays a negative role in salt stress response by impairing the superoxide dismutase (SOD) enzyme activity. Taken together, our study uncovered that RCD1 promotes salt stress response and maintains ROS homeostasis by inhibiting ANAC017 activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estresse Fisiológico/genética , Melhoramento Vegetal , Tolerância ao Sal/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
11.
J Hazard Mater ; 448: 130878, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731319

RESUMO

Since the 1980s, plastic waste in the environment has been accumulating, and little is known about fungi biodegradation, especially in dry environments. Therefore, the research on plastic degradation technology is urgent. In this study, we demonstrated that Phanerochaete chrysosporium (P. chrysposporium), a typical species of white rot fungi, could react as a highly efficient biodegrader of polylactic acid (PLA), and 34.35 % of PLA degradation was obtained during 35-day incubation. A similar mass loss of 19.71 % could be achieved for polystyrene (PS) degradation. Here, we presented the visualization of the plastic deterioration process and their negative reciprocal on cell development, which may be caused by the challenge of using PS as a substrate. The RNA-seq analysis indicated that adaptations in energy metabolism and cellular defense were downregulated in the PS group, while lipid synthesis was upregulated in the PLA-treated group. Possible differentially expressed genes (DEG) of plastic degradation, such as hydrophobic proteins, lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), Cytochrome P450 (CYP450), and genes involved in styrene or benzoic acid degradation pathways have been recorded, and we proposed a PS degradation pathway.


Assuntos
Basidiomycota , Phanerochaete , Plásticos/metabolismo , Peroxidases/metabolismo , Basidiomycota/metabolismo , Fungos/metabolismo , Biodegradação Ambiental , Poliésteres , Phanerochaete/metabolismo , Lignina/metabolismo
12.
Planta ; 257(2): 30, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36596996

RESUMO

MAIN CONCLUSION: Introducing 35S-dsRED2 into the Cas9 vector which expresses naked-eye visible dsRED2 greatly facilitates the genetic screening, and the WUS promoter driving the Cas9 expression can improve editing efficiency in Arabidopsis. CRISPR/Cas9-dependent genome editing has been applied to generate random insertions and deletions, targeted insertions or replacements, and precise base changes for both fundamental studies in many plant species and crop improvement. To simplify the screening procedure for target gene-edited transformants, we introduced a CaMV 35S-driven dsRED2 cassette (35S-dsRED2) into the Cas9 vector to express the naked-eye visible protein dsRED2, which can be observed under white light, greatly facilitated the genetic screening and reduced labor intensity without using any instrument. In addition, the WUS promoter was used to drive the expression of Cas9, which successfully improved the target genes editing efficiency and enabled the homozygous mutagenesis of two genes in T1 generation in Arabidopsis. Considering the conserved function and expression pattern of WUS across the plant species, this dsRED2-WUS/Cas9 system could also be used in many crops.


Assuntos
Arabidopsis , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética , Edição de Genes/métodos
13.
Small ; 19(12): e2206233, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592416

RESUMO

Albeit considerable attention to the fast-developing organic thermoelectric (OTE) materials due to their flexibility and non-toxic features, it is still challenging to design an OTE polymer with superior thermoelectric properties. In this work, two "isomorphic" donor-acceptor (D-A) conjugated polymers are studied as the semiconductor in OTE devices, revealing for the first time the internal mechanism of regioregularity on thermoelectric performances in D-A type polymers. A higher molecular structure regularity can lead to higher crystalline order and mobility, higher doping efficiency, order of energy state, and thermoelectric (TE) performance. As a result, the regioregular P2F exhibits a maximum power factor (PF) of up to 113.27 µW m-1  K-2 , more than three times that of the regiorandom PRF (35.35 µW m-1  K-2 ). However, the regular backbone also implies lower miscibility with a dopant, negatively affecting TE performance. Therefore, the trade-off between doping efficiency and miscibility plays a vital role in OTE materials, and this work sheds light on the molecular design strategy of OTE polymers with state-of-the-art performances.

14.
Adv Mater ; 35(1): e2208008, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271739

RESUMO

With the great potential of the all-polymer solar cells for large-area wearable devices, both large-area device efficiency and mechanical flexibility are very critical but attract limited attention. In this work, from the perspective of the polymer configurations, two types of terpolymer acceptors PYTX-A and PYTX-B (X = Cl or H) are developed. The configuration difference caused by the replacement of non-conjugated units results in distinct photovoltaic performance and mechanical flexibility. Benefiting from a good match between the intrinsically slow film-forming of the active materials and the technically slow film-forming of the blade-coating process, the toluene-processed large-area (1.21 cm2 ) binary device achieves a record efficiency of 14.70%. More importantly, a new parameter of efficiency stretchability factor (ESF) is proposed for the first time to comprehensively evaluate the overall device performance. PM6:PYTCl-A and PM6:PYTCl-B yield significantly higher ESF than PM6:PY-IT. Further blending with non-conjugated polymer donor PM6-A, the best ESF of 3.12% is achieved for PM6-A:PYTCl-A, which is among the highest comprehensive performances.

15.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361840

RESUMO

Auxin is a general coordinator for growth and development throughout plant lifespan, acting in a concentration-dependent manner. Tryptophan aminotransferases (YUCCA) family catalyze the oxidative decarboxylation of indole-3-pyruvic acid (IPA) to form indole-3-acetic acid (IAA) and plays a critical role in auxin homeostasis. Here, 18 YUCCA family genes divided into four categories were identified from Mikania micrantha (M. micrantha), one of the world's most invasive plants. Five highly conserved motifs were characterized in these YUCCA genes (MmYUCs). Transcriptome analysis revealed that MmYUCs exhibited distinct expression patterns in different organs and five MmYUCs showed high expression levels throughout all the five tissues, implying that they may play dominant roles in auxin biosynthesis and plant development. In addition, MmYUC6_1 was overexpressed in DR5::GUS Arabidopsis line to explore its function, which resulted in remarkably increased auxin level and typical elevated auxin-related phenotypes including shortened roots and elongated hypocotyls in the transgenic plants, suggesting that MmYUC6_1 promoted IAA biosynthesis in Arabidopsis. Collectively, these findings provided comprehensive insight into the phylogenetic relationships, chromosomal distributions, expression patterns and functions of the MmYUC genes in M. micrantha, which would facilitate the study of molecular mechanisms underlying the fast growth of M. micrantha and preventing its invasion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mikania , Yucca , Arabidopsis/genética , Arabidopsis/metabolismo , Mikania/genética , Mikania/metabolismo , Yucca/genética , Yucca/metabolismo , Filogenia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Small ; 18(20): e2200734, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35434914

RESUMO

Developing robust materials is very critical and faces a big challenge for high-performance large-area all-polymer solar cells (all-PSCs) by printing methods. Herein, the authors combine the advantages of the terpolymerization strategy with the non-conjugated backbone strategy to regulate the molecular aggregation rationally during the film-forming printing process, facilitating a facile printing process for large-area all-PSCs. A series of terpolymer acceptors PYSe-Clx (x = 0, 10, 20, and 30) is also developed, which can effectively fine-tune the morphology and photoelectric properties of the active layer. The PBDB-T: PYSe-Cl20-based all-PSC delivers a significantly improved power cconversion efficiency (PCE) than the one with PBDB-T: PYSe (14.21% vs 12.45%). By addition of a small amount of non-conjugated polymer acceptor PTClo-Y, the ternary all-PSC reaches a PCE of 15.26%. More importantly, the regulation of molecular aggregation enables a facile blade-coating process of the large-area device. A record PCE of 13.81% for large-area devices (1.21 cm2 ) is obtained, which is the highest value for large-area all-PSCs fabricated by blade-coating. The environmentally friendly solvent processed large-area device also obtains an excellent performance of 13.21%. This work provides a simple and effective molecular design strategy of robust materials for high-performance large-area all-PSCs by a printing process.

17.
Angew Chem Int Ed Engl ; 61(25): e202202177, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383399

RESUMO

Enhancing the built-in electric field to promote charge dynamitic process is of great significance to boost the performance of the non-fullerene organic solar cells (OSCs), which has rarely been concerned. In this work, we introduced a cheap ferroelectric polymer as an additive into the active layers of non-fullerene OSCs to improve the device performance. An additional and permanent electrical field was produced by the polarization of the ferroelectric dipoles, which can substantially enhance the built-in electric field. The promoted exciton separation, significantly accelerated charge transport, reduced the charge recombination, as well as the optimized film morphology were observed in the device, leading to a significantly improved performance of the PVDF-modified OSCs with various active layers, such as PM6 : Y6, PM6 : BTP-eC9, PM6 : IT-4F and PTB7-Th : Y6. Especially, a record efficiency of 17.72 % for PM6 : Y6-based OSC and an outstanding efficiency of 18.17 % for PM6 : BTP-eC9-based OSC were achieved.

18.
Angew Chem Int Ed Engl ; 61(21): e202200329, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35263008

RESUMO

Although ternary organic solar cells (OSCs) have unique advantages in improving device performance, the morphology assembly in the ternary-phase would be more uncertain or complex than that in the binary-phase. Here, we propose a new concept of oligomer-assisted photoactive layers for high-performance OSCs. The formed alloy-like phase of the oligomer : host polymer blend enabled the oligomer-assisted OSCs to fuse the advantages of both binary and ternary devices, exhibiting substantially enhanced performance and stability compared to the control devices. With the addition of oligomers, outstanding efficiencies of 17.33 % for a PM6 : Y6 device, 18.32 % for a PM6 : BTP-eC9 device, and 17.13 % for a PM6/Y6 pseudo-bilayer device were achieved, all of which are one of the highest values in their corresponding fields. The improved performance originated from the downshift energy levels, enhanced light absorption, optimized blend morphology, favorable charge dynamics, and reduced non-radiative energy loss.

19.
ChemSusChem ; 15(8): e202200138, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212463

RESUMO

Although breakthroughs have been made in organic solar cells (OSCs) in recent years, the power conversion efficiency (PCE) of OSCs still lags behind inorganic/perovskite solar cells. In this work, two terpolymers were synthesized by introducing the thieno[3,4-c]pyrrole-4,6-(5H)-dione (TPD) block into the host polymer donor PM6. Owing to the lower highest occupied molecular orbital energy level, wider light absorption, optimal molecular packing, and more desirable aggregation morphology by addition of the TPD, the PM6-TPD-5 % : Y6-based device displayed an improved PCE of 16.3 % with an enhanced open-circuit voltage (VOC ) of 0.860 V, relative to that of PM6-TPD-10 % : Y6 (PCE=14.8 %) and PM6 : Y6-based device (PCE=15.6 %). Interestingly, the VOC did not always increase in proportion to the third component. Besides, ternary OSCs based on PM6 : PM6-TPD-5 % : Y6 achieved a superior PCE of 17.1 %. This work demonstrated that random copolymerization is a feasible and effective strategy to further increase device performance, and the two polymers that possess similar structure and absorption in ternary devices can also obtain impressive efficiency.

20.
ChemSusChem ; 15(4): e202102420, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964275

RESUMO

Organic semiconductor (OSCs) thermoelectric materials have been studied widely due to their low thermal conductivity and solution processing characteristics. Currently, the high conductivity (up to 1000 s cm-1 ) has boosted the performance of p-type organic thermoelectric materials substantially. In contrast, the development of n-type organic thermoelectric materials is still limited by their low mobility, inferior air stability, and poor doping efficiency, which is relevant to the molecule structure and dopant dispersion. Herein, the recent development of n-type organic thermoelectric materials was reviewed with an emphasis on molecule structure modification and solution processing. Methods for optimizing conjugate structure were summarized from the effects of conjugated backbone modification and side chains diversification on molecular stacking. The primary n-type dopants were also summarized briefly. Especially, the role of solution aggregation controlling on film preparation and properties was given special attention. Additionally, the emergence of organic diradicals with low lowest unoccupied molecular orbital energy level and no doping was introduced, which shows great potential in n-type organic thermoelectric materials. All these endeavors have led to the development of n-type OSCs materials. This Review is aimed at illustrating the state-of-the-art progress and providing some guideline for the design of organic thermoelectric materials in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...