Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(8): 2256-2265, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241698

RESUMO

The mitogen-activated protein kinase (MAPK/MPK) cascade is an important intercellular signaling module that regulates plant growth, development, reproduction, and responses to biotic and abiotic stresses. A MAPK cascade usually consists of a MAPK kinase kinase (MAPKKK/MEKK), a MAPK kinase (MAPKK/MKK/MEK), and a MAPK. The well-characterized MAPK cascades in plant immunity to date are the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade. Recently, major breakthroughs have been made in understanding the molecular mechanisms associated with the regulation of immune signaling by both of these MAPK cascades. In this review, we highlight the most recent advances in understanding the role of both MAPK cascades in activating plant defense and in suppressing or fine-tuning immune signaling. We also discuss the molecular mechanisms by which plants stabilize and maintain the activation of MAPK cascades during immune signaling. Based on this review, we reveal the complexity and importance of the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade, which are tightly controlled by their interacting partners or substrates, in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Imunidade Vegetal/fisiologia
2.
Acad Radiol ; 31(1): 84-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37495426

RESUMO

RATIONALE AND OBJECTIVES: Osteoporosis is primarily diagnosed using dual-energy X-ray absorptiometry (DXA); yet, DXA is significantly underutilized, causing osteoporosis, an underdiagnosed condition. We aimed to provide an opportunistic approach to screen for osteoporosis using artificial intelligence based on lumbar spine X-ray radiographs. MATERIALS AND METHODS: In this institutional review board-approved retrospective study, female patients aged ≥50 years who received both X-ray scans and DXA of the lumbar vertebrae, in three centers, were included. A total of 1180 cases were used for training and 145 cases were used for testing. We proposed a novel broad-learning system (BLS) and then compared the performance of BLS models using radiomic features and deep features as a source of input. The deep features were extracted using ResNet18 and VGG11, respectively. The diagnostic performances of these BLS models were evaluated with the area under the curve (AUC), sensitivity, and specificity. RESULTS: The incidence rate of osteoporosis in the training and test sets was 35.9% and 37.9%, respectively. The radiomic feature-based BLS model achieved higher testing AUC (0.802 vs. 0.654 vs. 0.632, both P = .002), sensitivity (78.2% vs. 56.4% vs. 50.9%), and specificity (82.2% vs. 74,4% vs. 75.6%) than the two deep feature-based BLS models. CONCLUSION: Our proposed radiomic feature-based BLS model has the potential to expand osteoporosis screening to a broader population by identifying osteoporosis on lumbar spine X-ray radiographs.


Assuntos
Vértebras Lombares , Osteoporose , Humanos , Feminino , Vértebras Lombares/diagnóstico por imagem , Densidade Óssea , Estudos Retrospectivos , Inteligência Artificial , Osteoporose/diagnóstico por imagem , Absorciometria de Fóton
3.
iScience ; 26(11): 108325, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026222

RESUMO

The causality between atherosclerosis and dementia remains unclear. This study aimed to explore the causal effect of atherosclerosis related indicators on dementia risk based on two-sample Mendelian randomization (MR) using summary statistics of genome-wide association studies (GWASs). The inverse variance weighted (IVW) method was performed as the main analysis, supplemented by different sensitivity analyses. Suggestive evidence indicated that peripheral arterial disease (PAD) (odds ratio (OR): 0.864, 95% confidence interval (CI): 0.797-0.937), coronary atherosclerosis (CoAS) (OR: 0.927, 95% CI: 0.860-0.998) and atherosclerosis, excluding cerebral, coronary, and PAD (ATHSCLE) (OR: 0.812, 95% CI: 0.725-0.909) were inversely associated with the risk of AD. The sensitivity analysis confirmed a suggestive reverse effect of ATHSCLE on the risk of frontotemporal dementia (FTD) (OR, 0.812, 95% CI, 0.725-0.909). Findings provide suggestive evidence that PAD, CoAS, and ATHSCLE might be associated with the risk of AD or FTD, which requires further exploration in larger samples.

4.
Front Oncol ; 13: 991825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910644

RESUMO

Objective: The relationship between vascular endothelial growth factor (VEGF) and the risk of malignant brain tumors has always been a concern in the medical field. However, the causal inferences from published observational studies on this issue may be affected by confounders, coinheritability and reverse causality. We aimed to investigate the causal relationship between VEGF and different types of malignant brain tumors. Methods: Using publicly available summary data from genome-wide association studies (GWAS) of VEGF (n=16,112) and different types of malignant brain tumors (n=174,097-174,646), we adopted a standard two-sample bidirectional Mendelian randomization (MR) to estimate potential causal associations of circulating VEGF levels and the risk of malignant brain tumors. Inverse variance weighted (IVW) was used as the primary analysis method to estimate causality. MR-Egger regression, weighted median (WM), penalty weighted median (PWM), MR robust adjusted profile score (MR.RAPS) and causal analysis using summary effect estimates (CAUSE) methods were used in sensitivity analyses to verify the robustness of the findings. Meanwhile, we applied the MR pleiotropy residual sum and outlier (MR-PRESSO) test and PhenoScanner tool to identify and remove potential horizontal pleiotropic single nucleotide polymorphisms (SNPs). Additionally, linkage disequilibrium score regression (LDSC) analysis was conducted to assess the coinheritability of exposure and outcome. Results: A total of 6 (VEGF), 12 (malignant brain tumor), 13 (brain glioblastoma) and 12 (malignant neoplasm of meninges) SNPs were identified as valid instrumental variables. No evidence supported a causal relationship between circulating VEGF levels and the risk of malignant brain tumors (forwards: odds ratio (OR) = 1.277, 95% confidence interval (CI), 0.812~2.009; reversed: ß = 0.005, 95% CI, -0.029~0.038), brain glioblastoma (forwards: OR (95% CI) = 1.278(0.463~3.528); reversed: ß = 0.010, 95% CI, -0.002~0.022) and malignant neoplasm of meninges (forwards: OR (95% CI) = 0.831(0.486~1.421); reversed: ß = 0.010, 95% CI, -0.030~0.050) using the main IVW method. Outliers and pleiotropy bias were not detected by sensitivity analyses and pleiotropy-robust methods in any estimates. LDSC failed to identify genetic correlations between VEGF and different types of malignant brain tumors. Conclusions: Our findings reported no coinheritability and failed to provide evidence for causal associations between VEGF and the risk of different types of malignant brain tumors. However, certain subtypes of VEGF for which genetic predictors have not been identified may play a role and need to be further investigated.

5.
Mol Biol Rep ; 50(3): 2883-2892, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538170

RESUMO

Tea, which is mainly produced using the young leaves and buds of tea plants (Camellia sinensis (L.) O. Kuntze), is one of the most common non-alcoholic beverages consumed in the world. The standard of tea mostly depends on the variety and quality of tea plants, which generally grow in subtropical areas, where the warm and humid conditions are also conducive to the occurrence of diseases. In fighting against pathogens, plants rely on their sophisticated innate immune systems which has been extensively studied in model plants. Many components involved in pathogen associated molecular patterns (PAMPs) triggered immunity (PTI) and effector triggered immunity (ETI) have been found. Nevertheless, the molecular regulating network against pathogens (e.g., Pseudopestalotiopsis sp., Colletotrichum sp. and Exobasidium vexans) causing widespread disease (such as grey blight disease, anthracnose, and blister blight) in tea plants is still unclear. With the recent release of the genome data of tea plants, numerous genes involved in tea plant immunity have been identified, and the molecular mechanisms behind tea plant immunity is being studied. Therefore, the recent achievements in identifying and cloning functional genes/gene families, in finding crucial components of tea immunity signaling pathways, and in understanding the role of secondary metabolites have been summarized and the opportunities and challenges in the future studies of tea immunity are highlighted in this review.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Eng Appl Artif Intell ; 115: 105323, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35992036

RESUMO

With the global outbreak of COVID-19, there is an urgent need to develop an effective and automated detection approach as a faster diagnostic alternative to avoid the spread of COVID-19. Recently, broad learning system (BLS) has been viewed as an alternative method of deep learning which has been applied to many areas. Nevertheless, the sparse autoencoder in classical BLS just considers the representations to reconstruct the input data but ignores the relationship among the extracted features. In this paper, inspired by the effectiveness of the collaborative-competitive representation (CCR) mechanism, a novel collaborative-competitive representation-based autoencoder (CCRAE) is first proposed, and then collaborative-competitive broad learning system (CCBLS) is proposed based on CCRAE to effectively address the issues mentioned above. Moreover, an automated CCBLS-based approach is proposed for COVID-19 detection from radiology images such as CT scans and chest X-ray images. In the proposed approach, a feature extraction module is utilized to extract features from CT scans or chest X-ray images, then we use these features for COVID-19 detection with CCBLS. The experimental results demonstrated that our proposed approach can achieve superior or comparable performance in comparison with ten other state-of-the-art methods.

7.
Plant Dis ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040223

RESUMO

Pepper is an important and widely cultivated economic vegetable in the world (Yin et al., 2021). In June 2021, approximately 25% to 33.3% of the pepper plants had rot disease symptoms in Zhuanghang Comprehensive Experimental Base (30.894829 °N, 121.391374 °E), Fengxian district, Shanghai city, China. Water-soaked spots appeared on fruits that increased in size and leading to smelly fruit decay. To isolate the pathogen, three pepper samples with severe symptoms were collected. The samples were surface disinfected with 70% ethanol for 30 sec, 10% chlorine bleach for 10 min, rinsing with sterile water for three times and the rot tissues were cut and dried on sterile filter paper. The dried paper was later placed on potato dextrose agar (PDA) medium and incubated at 28°C (Tang et al., 2021). After 2-3 days, four types of colonies with different colony appearances were observed, in which only one can induce fruit rot phenotype (data not shown). Four isolates were cultured for molecular identification in each type. ITS1/ITS4, T1/ßt-2b and EF1-526F/EF1-1567R primers were used to amplify the internal transcribed spacer region (ITS), the beta-tubulin (TUB2) and the translation elongation factor I alpha (EF1-α) genes, respectively (Chen et al., 2018) and corresponding sequences from the isolates were analyzed with BLAST. Sequences of the isolate which can induce pepper decay were submitted to GenBank under the accession numbers of OM663701 (ITS), OM720127 (TUB2) and OM720128 (EF1-α). The results showed that the pathogen had 99% sequence homology to most strains of Botryosphaeria dothidea (B. dothidea) and displayed the highest sequence similarity to strain LBSX-1 (ITS: KF55123), strain JGT01 (TUB2: MW202404) and isolate CZA (EF1-α: MN025271). Based on molecular characterization, the isolate was identified as B. dothidea isolate SH01. A phylogenetic tree was constructed using Maximum Parsimony (MP) methods by MEGA7, and showed that SH01 was closely related to isolate CMW9075. To confirm the pathogenicity, five healthy pepper fruits were surface sterilized, 500µl of conidial suspension (1×103 conidia/ml) were injected into pepper (sterilized distilled water as control). Six days post inoculation (dpi), fruit rot symptoms appeared and the pepper decayed at 12 dpi. Four days post inoculation with mycelium plugs (from a 4-day-old culture on PDA, PDA plugs as control), hyphae were observed in the inoculation site and B. dothidea was re-isolated from the symptomatic areas, thus fulfilling Koch's postulates (Back et al., 2021, Chen et al., 2020). The pepper rotted severely at 7 dpi. The colonies of SH01 were pale to white and gradually turned into gray in 4-6 days. Conidia of the pathogen were unicellular, aseptate, hyaline and fusiform to fusoid, with dimensions of 19.7-23.5 µm × 3.8-5.2 µm (average = 21.9 µm × 4.8 µm, n = 50). Hyphae were transparent, branched and composed of multiple cells. The characteristic was consistent with the descriptions of B. dothidea (Vasic et al., 2013). B. dothidea belongs to Botryosphaeriaceae, causing widespread diseases in many plant species, commonly associated with cankers and dieback of woody plants and economic crops, such as plumcot trees (Back et al., 2021), eucalyptus (Yu et al., 2009) and soybeans (Chen et al., 2020) in China and Korea. Our findings reported for the first time that B. dothidea (SH01) can induce the pepper rot disease and future work on its pathogenesis may provide strategies for disease control against this fungus.

8.
Nanoscale ; 13(4): 2601-2608, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481982

RESUMO

Topological Weyl semimetals have attracted considerable interest because they manifest underlying physics and device potential in spintronics. Large anomalous Hall effect (AHE) in non-collinear antiferromagnets (AFMs) represents a striking Weyl phase, which is associated with Bloch-band topological features. In this work, we report robust AHE and Lifshitz transition in high-quality Weyl semimetal Mn3Ge thin film, comprising stacked Kagome lattice and chiral antiferromagnetism. We successfully achieved giant AHE in our Mn3Ge film, with a strong Berry curvature enhanced by the Weyl phase. The enormous coercive field HC in our AHE curve at 5 K reached an unprecedented 5.3 T among hexagonal Mn3X systems. Our results provide direct experimental evidence of an electronic topological transition in the chiral AFMs. The temperature was demonstrated to play an efficient role in tuning the carrier concentration, which could be quantitatively determined by the two-band model. The electronic band structure crosses the Fermi energy level and leads to the reversal of carrier type around 50 K. The results not only offer new functionality for effectively modulating the Fermi level location in topological Weyl semimetals but also present a promising route of manipulating the carrier concentration in antiferromagnetic spintronic devices.

9.
Phys Rev Lett ; 125(8): 086602, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909775

RESUMO

Topological materials are expected to show distinct transport signatures owing to their unique band-inversion characteristic and band-crossing points. However, the intentional modulation of such topological responses through experimentally feasible means has yet to be explored in depth. Here, an unusual elevation of the anomalous Hall effect (AHE) is obtained in electron (Ni)-doped magnetic Weyl semimetals Co_{3-x}Ni_{x}Sn_{2}S_{2}, showing peak values in the anomalous Hall-conductivity, Hall-angle, and Hall-factor at a relatively low doping level of x=0.11. The separation of intrinsic and extrinsic contributions using the TYJ scaling model indicates that such a significant enhancement is dominated by the intrinsic mechanism of the electronic Berry curvature. Theoretical calculations reveal that compared with the Fermi-level shifting from electron filling, a usually overlooked effect of doping, that is, local disorder, imposes a striking effect on broadening of the bands and narrowing of the inverted gap, thus resulting in an elevation of the integrated Berry curvature. Our results not only realize an enhancement of the AHE in a magnetic Weyl semimetal, but also provide a practical design principle for modulating the bands and transport properties in topological materials by exploiting the local disorder effect from doping.

10.
J Phys Condens Matter ; 33(4)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990659

RESUMO

Accurate atomic scale structure is of importance for revealing the still mysterious electronic phase transitions in a famous 2D metal, 2H-NbSe2. In this work, the electric field gradients (EFGs) of 2H-NbSe2at Nb sites in the normal state were investigated by93Nb nuclear magnetic resonance spectroscopy in combination with first-principles computations. The previousT3/2and linearTmodels for describing the temperature dependent EFGs were tested and discussed according to our measured and theoretically computed EFG data in this two-dimensional metal.

11.
Nat Commun ; 11(1): 3577, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681004

RESUMO

Electrical manipulation of skyrmions attracts considerable attention for its rich physics and promising applications. To date, such a manipulation is realized mainly via spin-polarized current based on spin-transfer torque or spin-orbital torque effect. However, this scheme is energy consuming and may produce massive Joule heating. To reduce energy dissipation and risk of heightened temperatures of skyrmion-based devices, an effective solution is to use electric field instead of current as stimulus. Here, we realize an electric-field manipulation of skyrmions in a nanostructured ferromagnetic/ferroelectrical heterostructure at room temperature via an inverse magneto-mechanical effect. Intriguingly, such a manipulation is non-volatile and exhibits a multistate feature. Numerical simulations indicate that the electric-field manipulation of skyrmions originates from strain-mediated modification of effective magnetic anisotropy and Dzyaloshinskii-Moriya interaction. Our results open a direction for constructing low-energy-dissipation, non-volatile, and multistate skyrmion-based spintronic devices.

12.
Adv Mater ; 32(1): e1904815, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31746047

RESUMO

Helicity indicates the in-plane magnetic-moment swirling direction of a skyrmionic configuration. The ability to reverse the helicity of a skyrmionic bubble via purely electrical means has been predicted in frustrated magnetic systems; however, it has been challenging to observe this experimentally. The current-driven helicity reversal of the skyrmionic bubble in a nanostructured frustrated Fe3 Sn2 magnet is experimentally demonstrated. The critical current density required to trigger the helicity reversal is 109 -1010 A m-2 , with a corresponding pulse-width varying from 1 µs to 100 ns. Computational simulations reveal that both the pinning effect and dipole-dipole interaction play a crucial role in the helicity reversal process.

13.
J Phys Condens Matter ; 31(42): 425401, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31226695

RESUMO

For solid-state phase transitions, the alterations of electronic structure driven by the band Jahn-Teller effect would play an essential role in the structural phase transitions and in switching the resistivity or magnetization states for potential applications. However, this evolution of the electronic structure and electronic transport during the martensitic transformations (MT) still lacks comprehensive investigations, especially in magnetic martensitic materials studied in recent years. In this work, we report a study on the electronic behaviors during the MT in a kind of all-d-metal Ni50-x Fe x Mn35Ti15 Heusler magnetic shape memory alloys, by combining x-ray diffraction, calorimetric, magnetic, transport measurements and calculations. Based on the magnetic MTs, the system shows large magnetocaloric effect and magnetoresistance. In the whole temperature range, the system is dominated by hole carriers in both parent and martensite phases. A sharp increase in carrier concentration is observed across the transformations. Meanwhile, the mobility of holes is depressed due to the lattice distortion. A picture of the characteristics of MTs has been proposed for general understanding and clues of the potential spintronic applications based on the magnetostructural phase transitions.

14.
ACS Nano ; 13(1): 922-929, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30605309

RESUMO

The discovery of magnetic skyrmion bubbles in centrosymmetric magnets has been receiving increasing interest from the research community, due to the fascinating physics of topological spin textures and its possible applications to spintronics. However, key challenges remain, such as how to manipulate the nucleation of skyrmion bubbles to exclude the trivial bubbles or metastable skyrmion bubbles that usually coexist with skyrmion bubbles in the centrosymmetric magnets. Here, we report having performed this task by applying spatially geometric confinement to a centrosymmetric frustrated Fe3Sn2 magnet. We demonstrate that the spatially geometric confinement can indeed stabilize the skyrmion bubbles by effectively suppressing the formation of trivial bubbles and metastable skyrmion bubbles. We also show that the critical magnetic field for the nucleation of the skyrmion bubbles in the confined Fe3Sn2 nanostripes is drastically less, by an order of magnitude, than that required in the thin plate without geometrical confinement. By analyzing how the width and thickness of the nanostripes affect the spin textures of skyrmion bubbles, we infer that the topological transition of skyrmion bubbles is closely related to the dipole-dipole interaction, which we find is consistent with theoretical simulations. The results presented here bring us closer to achieving the fabrication of skyrmion-based racetrack memory devices.

15.
Mol Plant ; 12(1): 59-70, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30408577

RESUMO

Plants employ receptor-like kinases (RLKs) and receptor-like proteins for rapid recognition of invading pathogens, and RLKs then transmit signals to receptor-like cytoplasmic kinases (RLCKs) to activate immune responses. RLKs are under fine regulation mediated by subcellular trafficking, which contributes to proper activation of plant immunity. In this study, we show that Arabidopsis thaliana RECEPTOR-LIKE KINASE 902 (RLK902) plays important roles in resistance to the bacterial pathogen Pseudomonas syringae, but not to the fungal powdery mildew pathogen Golovinomyces cichoracearum. RLK902 localizes at the plasma membrane and associates with ENHANCED DISEASE RESISTANCE 4 (EDR4), a protein involved in clathrin-mediated trafficking pathways. EDR4 and CLATHRIN HEAVY CHAIN 2 (CHC2) regulate the subcellular trafficking and accumulation of RLK902 protein. Furthermore, we found that RLK902 directly associates with the RLCK BRASSINOSTEROID-SIGNALING KINASE1 (BSK1), a key component of plant immunity, but not with other members of the FLAGELLIN SENSING 2 immune complex. RLK902 phosphorylates BSK1, and its Ser-230 is a key phosphorylation site critical for RLK902-mediated defense signaling. Taken together, our data indicate that EDR4 regulates plant immunity by modulating the subcellular trafficking and protein accumulation of RLK902, and that RLK902 transmits immune signals by phosphorylating BSK1.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/enzimologia , Doenças das Plantas/imunologia , Proteínas Quinases/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiologia , Resistência à Doença , Fosforilação , Doenças das Plantas/microbiologia , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Pseudomonas syringae/fisiologia , Transdução de Sinais
17.
J Phys Condens Matter ; 30(8): 085703, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29319004

RESUMO

Recently, there have increasingly been debates on whether there exists a surface resonance state (SRS) in black phosphorus (BP), as suggested by recent angle-resolved photoemission spectroscopy results. To resolve this issue, we have performed temperature- and angle-dependent magnetoconductivity measurements on exfoliated, high-quality BP single crystals. A pronounced weak-antilocalization (WAL) effect was observed within a narrow temperature range of 8-16 K, with the electrical current flowing parallel to the cleaved ac-plane (along the a- or c-axis) and the magnetic field along the b-axis. The angle-dependent magnetoconductivity and the Hikami-Larkin-Nagaoka model-fitted results have revealed that the observed WAL effect shows surface-bulk coherent features, which supports the existence of SRS in BP.

18.
J Phys Condens Matter ; 30(6): 065803, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29341957

RESUMO

Magnetic skyrmions are topologically protected spin configurations and have recently received growingly attention in magnetic materials. The existence of biskyrmions within a broad temperature range has been identified in our newly-discovered MnNiGa material, promising for potential application in physics and technological study. Here, the biskyrmion microscopic origination from the spin configuration evolution of stripe ground state is experimentally identified. The biskyrmion manipulations based on the influences of the basic microstructures and external factors such as grain boundary confinement, sample thickness, electric current, magnetic field and temperature have been systematically studied by using real-space Lorentz transmission electron microscopy. These multiple tuning options help to understand the essential properties of MnNiGa and predict a significant step forward for the realization of skyrmion-based spintronic devices.

19.
Nano Lett ; 18(2): 1274-1279, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29299928

RESUMO

Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

20.
Nano Lett ; 17(11): 7075-7079, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28990787

RESUMO

Magnetic skyrmions, particular those without the support of external magnetic fields over a wide temperature region, are promising as alternative spintronic units to overcome the fundamental size limitation of conventional magnetic bits. In this study, we use in situ Lorentz microscope to directly demonstrate the generation and sustainability of robust biskyrmion lattice at zero magnetic field over a wide temperature range of 16-338 K in MnNiGa alloy. This procedure includes a simple field-cooling manipulation from 360 K (higher than Curie temperature TC ∼ 350 K), where topological transition easily occurs by adapting the short-range magnetic clusters under a certain magnetic field. The biskyrmion phase is favored upon cooling below TC. Once they are generated, the robust high-density biskyrmions persist even after removing the external magnetic field due to the topological protection and the increased energy barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...