Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 950571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210843

RESUMO

BRAF inhibitors are commonly used in targeted therapies for melanoma patients harboring BRAFV600E mutant. Despite the benefit of vemurafenib therapy, acquired resistance during or after treatment remains a major obstacle in BRAFV600E mutant melanoma. Here we found that RSK2 is overexpressed in melanoma cells and the high expression of RSK2 indicates poor overall survival (OS) in melanoma patients. Overexpression of RSK2 leads to vemurafenib resistance, and the deletion of RSK2 inhibits cell proliferation and sensitizes melanoma cells to vemurafenib. Mechanistically, RSK2 enhances the phosphorylation of FOXO1 by interacting with FOXO1 and promoting its subsequent degradation, leading to upregulation of cyclin D1 in melanoma cells. These results not only reveal the presence of a RSK2-FOXO1-cyclin D1 signaling pathway in melanoma, but also provide a potential therapeutic strategy to enhance the efficacy of vemurafenib against cancer.

2.
Acta Pharmacol Sin ; 42(7): 1180-1189, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33149145

RESUMO

Anexelekto (AXL), a member of the TYRO3-AXL-MER (TAM) family of receptor tyrosine kinases (RTK), is overexpressed in varieties of tumor tissues and promotes tumor development by regulating cell proliferation, migration and invasion. In this study, we investigated the role of AXL in regulating glycolysis in human ovarian cancer (OvCa) cells. We showed that the expression of AXL mRNA and protein was significantly higher in OvCa tissue than that in normal ovarian epithelial tissue. In human OvCa cell lines suppression of AXL significantly inhibited cell proliferation, and increased the sensitivity of OvCa cells to cisplatin, which also proved by nude mice tumor formation experiment. KEGG analysis showed that AXL was significantly enriched in the glycolysis pathways of cancer. Changes in AXL expression in OvCa cells affect tumor glycolysis. We demonstrated that the promotion effect of AXL on glycolysis was mediated by phosphorylating the M2 isoform of pyruvate kinase (PKM2) at Y105. AXL expression was significantly higher in cisplatin-resistant OvCa cells A2780/DDP compared with the parental A2780 cells. Inhibition of AXL decreased the level of glycolysis in A2780/DDP cells, and increased the cytotoxicity of cisplatin against A2780/DDP cells, suggesting that AXL-mediated glycolysis was associated with cisplatin resistance in OvCa. In conclusion, this study demonstrates for the first time that AXL is involved in the regulation of the Warburg effect. Our results not only highlight the clinical value of targeting AXL, but also provide theoretical basis for the combination of AXL inhibitor and cisplatin in the treatment of OvCa.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Glicólise/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Benzocicloeptenos/farmacologia , Benzocicloeptenos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos Nus , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
3.
Curr Top Med Chem ; 19(23): 2081-2097, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31486755

RESUMO

Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most commonly mutated oncogene in human cancer. The developments of many cancers depend on sustained expression and signaling of KRAS, which makes KRAS a high-priority therapeutic target. Scientists have not successfully developed drugs that target KRAS, although efforts have been made last three decades. In this review, we highlight the emerging experimental strategies of impairing KRAS membrane localization and the direct targeting of KRAS. We also conclude the combinatorial therapies and RNA interference technology for the treatment of KRAS mutant cancers. Moreover, the virtual screening approach to discover novel KRAS inhibitors and synthetic lethality interactors of KRAS are discussed in detail.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteína Oncogênica p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Antineoplásicos/química , Humanos , Mutação , Neoplasias/genética , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Interferência de RNA
4.
Front Pharmacol ; 10: 391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057406

RESUMO

Bcl-2 family protein is an important factor in regulating apoptosis and is associated with cancer. The anti-apoptotic proteins of Bcl-2 family, such as Bcl-2, are overexpression in numerous tumors, and contribute to cancer formation, development, and therapy resistance. Therefore, Bcl-2 is a promising target for drug development, and several Bcl-2 inhibitors are currently undergoing clinical trials. In this study, we carried out a QSAR-based virtual screening approach to develop potential Bcl-2 inhibitors from the SPECS database. Surface plasmon resonance (SPR) binding assay was performed to examine the interaction between Bcl-2 protein and the screened inhibitors. After that, we measured the anti-tumor activities of the 8 candidate compounds, and found that compound M1 has significant cytotoxic effect on breast cancer cells. We further proved that compound M1 downregulated Bcl-2 expression and activated apoptosis by inducing mitochondrial dysfunction. In conclusion, we identified a novel Bcl-2 inhibitor by QSAR screening, which exerted significant cytotoxic activity in breast cancer cells through inducing mitochondria-mediated apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...