Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180612

RESUMO

Expansion of the GGGGCC-RNA repeat is a known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which currently have no cure. Recent studies have indicated the activation of Sigma-1 receptor plays an important role in providing neuroprotection, especially in ALS and Alzheimer's disease. Nevertheless, the mechanisms underlying Sigma-1R activation and its effect on (G4C2)n-RNA-induced cell death remain unclear. In this study, we demonstrated that fluvoxamine is a Sigma-1R agonist that can increase chaperone activity and stabilize the protein expression of Pom121 in (G4C2)31-RNA-expressing NSC34 cells, leading to increased colocalization at the nuclear envelope. Interestingly, fluvoxamine treatment increased Pom121 protein expression without affecting transcription. In C9orf72-ALS, the nuclear translocation of TFEB autophagy factor decreased owing to nucleocytoplasmic transport defects. Our results showed that pretreatment of NSC34 cells with fluvoxamine promoted the shuttling of TFEB into the nucleus and elevated the expression of LC3-II compared to the overexpression of (G4C2)31-RNA alone. Additionally, even when used alone, fluvoxamine increases Pom121 expression and TFEB translocation. To summarize, fluvoxamine may act as a promising repurposed medicine for patients with C9orf72-ALS, as it stabilizes the nucleoporin Pom121 and promotes the translocation of TFEB in (G4C2)31-RNA-expressing NSC34 cells.

2.
Mol Neurobiol ; 60(4): 2200-2208, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36633805

RESUMO

Astroglial-fibrotic scars resulted from spinal cord injury affect motor and sensory function, leading to paralysis. In particular, the fibrotic scar is a main barrier that disrupts neuronal regeneration after spinal cord injury. However, the association between astrocytes and fibrotic scar formation is not yet understood. We have previously demonstrated that the transcriptional factor Cebpd contributes to astrogliosis, which promotes glial scar formation after spinal cord injury. Herein, we show that fibrotic scar formation was decreased in the epicenter region in Cebpd-/- mice after contusive spinal cord injury and astrocytic Cebpd promoted fibroblast migration through secretion of Ptx3. Furthermore, the expression of Mmp3 was increased under recombinant protein Ptx3 treatment in fibroblasts by observing microarray data, resulting in fibroblast migration. In addition, regulation of Mmp3 occurs through the NFκB signaling pathway by using an irreversible inhibitor of IκBα phosphorylation in pretreated fibroblasts. Of note, we used the synthetic peptide RI37, which blocks fibroblast migration and decreases fibroblast Mmp3 expression in IL-1ß-treated astrocyte conditioned media. Collectively, our data suggest that fibroblast migration can be affected by astrocytic Cebpd through the Ptx3/NFκB/Mmp3 axis pathway and that the RI37 peptide may act as a therapeutic medicine to inhibit fibrotic scar formation after spinal cord injury.


Assuntos
Cicatriz , Traumatismos da Medula Espinal , Camundongos , Animais , Cicatriz/patologia , Astrócitos/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Traumatismos da Medula Espinal/patologia , Fibrose , Gliose/patologia , Medula Espinal/patologia
3.
Autophagy ; 19(1): 126-151, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507432

RESUMO

Macroautophagy/autophagy is an essential process for cellular survival and is implicated in many diseases. A critical step in autophagy is the transport of the transcription factor TFEB from the cytosol into the nucleus, through the nuclear pore (NP) by KPNB1/importinß1. In the C9orf72 subtype of amyotrophic lateral sclerosis-frontotemporal lobar degeneration (ALS-FTD), the hexanucleotide (G4C2)RNA expansion (HRE) disrupts the nucleocytoplasmic transport of TFEB, compromising autophagy. Here we show that a molecular chaperone, the SIGMAR1/Sigma-1 receptor (sigma non-opioid intracellular receptor 1), facilitates TFEB transport into the nucleus by chaperoning the NP protein (i.e., nucleoporin) POM121 which recruits KPNB1. In NSC34 cells, HRE reduces TFEB transport by interfering with the association between SIGMAR1 and POM121, resulting in reduced nuclear levels of TFEB, KPNB1, and the autophagy marker LC3-II. Overexpression of SIGMAR1 or POM121, or treatment with the highly selective and potent SIGMAR1 agonist pridopidine, currently in phase 2/3 clinical trials for ALS and Huntington disease, rescues all of these deficits. Our results implicate nucleoporin POM121 not merely as a structural nucleoporin, but also as a chaperone-operated signaling molecule enabling TFEB-mediated autophagy. Our data suggest the use of SIGMAR1 agonists, such as pridopidine, for therapeutic development of diseases in which autophagy is impaired.Abbreviations: ALS-FTD, amyotrophic lateral sclerosis-frontotemporal dementiaC9ALS-FTD, C9orf72 subtype of amyotrophic lateral sclerosis-frontotemporal dementiaCS, citrate synthaseER, endoplasmic reticulumGSS, glutathione synthetaseHRE, hexanucleotide repeat expansionHSPA5/BiP, heat shock protein 5LAMP1, lysosomal-associated membrane protein 1MAM, mitochondria-associated endoplasmic reticulum membraneMAP1LC3/LC3, microtubule-associated protein 1 light chain 3NP, nuclear poreNSC34, mouse motor neuron-like hybrid cell lineNUPs, nucleoporinsPOM121, nuclear pore membrane protein 121SIGMAR1/Sigma-1R, sigma non-opioid intracellular receptor 1TFEB, transcription factor EBTMEM97/Sigma-2R, transmembrane protein 97.


Assuntos
Esclerose Lateral Amiotrófica , Autofagia , Demência Frontotemporal , Proteínas de Membrana , Receptores sigma , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Autofagia/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Proteínas de Choque Térmico/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , Fatores de Transcrição/metabolismo , Proteínas de Membrana/genética , Receptores sigma/metabolismo , Receptor Sigma-1
4.
Cell Mol Neurobiol ; 42(3): 597-620, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33095392

RESUMO

Sigma-1 receptor (Sig-1R) is a protein present in several organs such as brain, lung, and heart. In a cell, Sig-1R is mainly located across the membranes of the endoplasmic reticulum and more specifically at the mitochondria-associated membranes. Despite numerous studies showing that Sig-1R could be targeted to rescue several cellular mechanisms in different pathological conditions, less is known about its fundamental relevance. In this review, we report results from various studies and focus on the importance of Sig-1R in physiological conditions by comparing Sig-1R KO mice to wild-type mice in order to investigate the fundamental functions of Sig-1R. We note that the Sig-1R deletion induces cognitive, psychiatric, and motor dysfunctions, but also alters metabolism of heart. Finally, taken together, observations from different experiments demonstrate that those dysfunctions are correlated to poor regulation of ER and mitochondria metabolism altered by stress, which could occur with aging.


Assuntos
Receptores sigma , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Camundongos , Mitocôndrias/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Receptor Sigma-1
6.
Mol Neurobiol ; 58(6): 2523-2541, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33459966

RESUMO

Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER) chaperones implicated in neuropathic pain. Here we examine if the Sig-1R may relate to neuropathic pain at the level of dorsal root ganglia (DRG). We focus on the neuronal excitability of DRG in a "spare nerve injury" (SNI) model of neuropathic pain in rats and find that Sig-1Rs likely contribute to the genesis of DRG neuronal excitability by decreasing the protein level of voltage-gated Cav2.2 as a translational inhibitor of mRNA. Specifically, during SNI, Sig-1Rs translocate from ER to the nuclear envelope via a trafficking protein Sec61ß. At the nucleus, the Sig-1R interacts with cFos and binds to the promoter of 4E-BP1, leading to an upregulation of 4E-BP1 that binds and prevents eIF4E from initiating the mRNA translation for Cav2.2. Interestingly, in Sig-1R knockout HEK cells, Cav2.2 is upregulated. In accordance with those findings, we find that intra-DRG injection of Sig-1R agonist (+)pentazocine increases frequency of action potentials via regulation of voltage-gated Ca2+ channels. Conversely, intra-DRG injection of Sig-1R antagonist BD1047 attenuates neuropathic pain. Hence, we discover that the Sig-1R chaperone causes neuropathic pain indirectly as a translational inhibitor.


Assuntos
Genoma , Neuralgia/genética , Receptores sigma/metabolismo , Animais , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Tecido Nervoso/lesões , Tecido Nervoso/patologia , Membrana Nuclear/metabolismo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores sigma/agonistas , Receptores sigma/genética , Canais de Translocação SEC/metabolismo , Transcrição Gênica , Receptor Sigma-1
7.
Nat Commun ; 11(1): 5580, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149115

RESUMO

In a subgroup of patients with amyotrophic lateral sclerosis (ALS)/Frontotemporal dementia (FTD), the (G4C2)-RNA repeat expansion from C9orf72 chromosome binds to the Ran-activating protein (RanGAP) at the nuclear pore, resulting in nucleocytoplasmic transport deficit and accumulation of Ran in the cytosol. Here, we found that the sigma-1 receptor (Sig-1R), a molecular chaperone, reverses the pathological effects of (G4C2)-RNA repeats in cell lines and in Drosophila. The Sig-1R colocalizes with RanGAP and nuclear pore proteins (Nups) and stabilizes the latter. Interestingly, Sig-1Rs directly bind (G4C2)-RNA repeats. Overexpression of Sig-1Rs rescues, whereas the Sig-1R knockout exacerbates, the (G4C2)-RNA repeats-induced aberrant cytoplasmic accumulation of Ran. In Drosophila, Sig-1R (but not the Sig-1R-E102Q mutant) overexpression reverses eye necrosis, climbing deficit, and firing discharge caused by (G4C2)-RNA repeats. These results on a molecular chaperone at the nuclear pore suggest that Sig-1Rs may benefit patients with C9orf72 ALS/FTD by chaperoning the nuclear pore assembly and sponging away deleterious (G4C2)-RNA repeats.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Drosophila/metabolismo , Demência Frontotemporal/metabolismo , Neurônios Motores/metabolismo , Poro Nuclear/metabolismo , Receptores sigma/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular/genética , Esclerose Lateral Amiotrófica/genética , Animais , Citosol/metabolismo , Modelos Animais de Doenças , Drosophila/genética , Drosophila/fisiologia , Demência Frontotemporal/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Poro Nuclear/genética , Ligação Proteica , RNA Interferente Pequeno , Receptores sigma/genética , Proteína ran de Ligação ao GTP/genética , Receptor Sigma-1
8.
Methods Mol Biol ; 1843: 41-53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30203275

RESUMO

Store-operated Ca2+ entry (SOCE) is a Ca2+ influx pathway at the plasma membrane that replenishes intracellular Ca2+ stores in response to depletion of Ca2+ stores. The SOC current, also known as the Ca2+ release-activated Ca2+ current (ICRAC), has a small conductance, which makes selective recording difficult. This challenge may be addressed using techniques based on identification of Ca2+ influx patch-clamp electrophysiological recording and measurement of cytoplasmic Ca2+ accumulation with Ca2+-sensitive fluorophores. Here, we describe specific methods for studying SOCE using these approaches in rat dorsal root ganglion neurons.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Citofotometria , Imagem Molecular , Neurônios/fisiologia , Técnicas de Patch-Clamp , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citofotometria/métodos , Fenômenos Eletrofisiológicos , Ativação do Canal Iônico , Camundongos , Imagem Molecular/métodos , Neurônios/efeitos dos fármacos , Ratos , Análise de Célula Única
9.
Neuropharmacology ; 117: 292-304, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28232180

RESUMO

Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage-activated Ca2+ channels and increases ICa through low-voltage-activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.


Assuntos
Sinalização do Cálcio/fisiologia , Células Receptoras Sensoriais/metabolismo , Nervos Espinhais/lesões , Trombospondinas/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Feminino , Gânglios Espinais/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos da Linhagem 129 , Camundongos Knockout , Neuralgia/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Proteína Quinase C/metabolismo , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trombospondinas/genética
10.
Sci Rep ; 6: 27925, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27295516

RESUMO

Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca(2+) handling proteins, intracellular [Ca(2+)]i, and sarcoplasmic reticulum Ca(2+) content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/patologia , GTP Cicloidrolase/metabolismo , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Sinalização do Cálcio , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Modelos Animais de Doenças , GTP Cicloidrolase/genética , Hemodinâmica/efeitos dos fármacos , Hipoxantinas/farmacologia , Leupeptinas/administração & dosagem , Leupeptinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Estreptozocina/toxicidade , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Pain ; 157(9): 2068-2080, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27168360

RESUMO

Loss of high-voltage-activated (HVA) calcium current (ICa) and gain of low-voltage-activated (LVA) ICa after painful peripheral nerve injury cause elevated excitability in sensory neurons. Nerve injury is also accompanied by increased expression of the extracellular matrix glycoprotein thrombospondin-4 (TSP4), and interruption of TSP4 function can reverse or prevent behavioral hypersensitivity after injury. We therefore investigated TSP4 regulation of ICa in dorsal root ganglion (DRG) neurons. During depolarization adequate to activate HVA ICa, TSP4 decreases both N- and L-type ICa and the associated intracellular calcium transient. In contrast, TSP4 increases ICa and the intracellular calcium signal after low-voltage depolarization, which we confirmed is due to ICa through T-type channels. These effects are blocked by gabapentin, which ameliorates neuropathic pain by targeting the α2δ1 calcium subunit. Injury-induced changes of HVA and LVA ICa are attenuated in TSP4 knockout mice. In the neuropathic pain model of spinal nerve ligation, TSP4 application did not further regulate ICa of injured DRG neurons. Taken together, these findings suggest that elevated TSP4 after peripheral nerve injury may contribute to hypersensitivity of peripheral sensory systems by decreasing HVA and increasing LVA in DRG neurons by targeting the α2δ1 calcium subunit. Controlling TSP4 overexpression in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.


Assuntos
Canais de Cálcio/metabolismo , Regulação da Expressão Gênica/genética , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Células Receptoras Sensoriais/metabolismo , Trombospondinas/deficiência , Análise de Variância , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio/genética , Toxina da Cólera/metabolismo , Modelos Animais de Doenças , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/genética , Gânglios Espinais/patologia , Camundongos , Camundongos Knockout , Células Receptoras Sensoriais/efeitos dos fármacos , Trombospondinas/genética , Trombospondinas/farmacologia
12.
J Transl Med ; 14: 18, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26792056

RESUMO

BACKGROUND: Heart failure with ejection fraction (HFpEF) is a syndrome resulting from several co-morbidities in which specific mediators are unknown. The platelet proteome responds to disease processes. We hypothesize that the platelet proteome will change composition in patients with HFpEF and may uncover mediators of the syndrome. METHODS AND RESULTS: Proteomic changes were assessed in platelets from hospitalized subjects with symptoms of HFpEF (n = 9), the same subjects several weeks later without symptoms (n = 7) and control subjects (n = 8). Mass spectrometry identified 6102 proteins with five scans with peptide probabilities of ≥0.85. Of the 6102 proteins, 165 were present only in symptomatic subjects, 78 were only found in outpatient subjects and 157 proteins were unique to the control group. The S100A8 protein was identified consistently in HFpEF samples when compared with controls. We validated the fining that plasma S100A8 levels are increased in subjects with HFpEF (654 ± 391) compared to controls (352 ± 204) in an external cohort (p = 0.002). Recombinant S100A8 had direct effects on the electrophysiological and calcium handling profile in human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: Platelets may harbor proteins associated with HFpEF. S100A8 is present in the platelets of subjects with HFpEF and increased in the plasma of the same subjects. We further established a bedside-to-bench translational system that can be utilized as a secondary screen to ascertain whether the biomarkers may be an associated finding or causal to the disease process. S100A8 has been linked with other cardiovascular disease such as atherosclerosis and risk for myocardial infarction, stroke, or death. This is the first report on association of S100A8 with HFpEF.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteômica/métodos , Volume Sistólico , Idoso , Sequência de Aminoácidos , Calgranulina A/sangue , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Miócitos Cardíacos/efeitos dos fármacos , Peptídeos/química , Fenótipo , Proteoma/metabolismo , Proteínas Recombinantes/farmacologia , Reprodutibilidade dos Testes , Volume Sistólico/efeitos dos fármacos , Espectrometria de Massas em Tandem , Ultrassonografia
13.
J Neurosci ; 35(42): 14086-102, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490852

RESUMO

The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aß-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of Aß-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in Aß-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic Aß-LTMRs removes dorsal horn inhibition that otherwise prevents Aß-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in Aß-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions. SIGNIFICANCE STATEMENT: The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mecanorreceptores/fisiologia , Nociceptores/fisiologia , Limiar da Dor/fisiologia , Dor/fisiopatologia , Tato/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Dependovirus/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Mecanorreceptores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Dor/etiologia , Doenças do Sistema Nervoso Periférico/complicações , Ratos , Ratos Sprague-Dawley , Privação Sensorial/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/inervação
14.
Mol Pain ; 11: 5, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25888914

RESUMO

BACKGROUND: Cell-based therapy may hold promise for treatment of chronic pain. Mesenchymal stem cells (MSCs) are readily available and robust, and their secretion of therapeutic peptides can be enhanced by genetically engineering. We explored the analgesic potential of transplanting bone marrow-derived MSCs that have been transduced with lentivectors. To optimize efficacy and safety, primary sensory neurons were targeted by MSC injection into the dorsal root ganglia (DRGs). RESULTS: MSCs were transduced using lentivectors to express enhanced green fluorescent protein (EGFP) or to co-express the analgesic peptide glial cell line-derived neurotrophic factor (GDNF) and EGFP by a viral 2A bicistronic transgene cassette. Engineered MSCs were injected into the 4(th) lumbar (L4) and L5 DRGs of adult allogeneic rats to evaluate survival in the DRGs. MSCs were detected by immunofluorescence staining up to 2-3 weeks after injection, distributed in the extracellular matrix space without disrupting satellite glial cell apposition to sensory neurons, suggesting well-tolerated integration of engrafted MSCs into DRG tissue. To examine their potential for inhibiting development of neuropathic pain, MSCs were injected into the L4 and L5 DRGs ipsilateral to a spinal nerve ligation injury. Animals injected with GDNF-engineered MSCs showed moderate but significant reduction in mechanical allodynia and hyperalgesia compared to controls implanted with MSCs expressing EGFP alone. We also observed diminished long-term survival of allografted MSCs at 3 weeks, and the development of a highly-proliferating population of MSCs in 12% of DRGs after transplantation. CONCLUSIONS: These data indicate that genetically modified MSCs secreting analgesic peptides could potentially be developed as a novel DRG-targeted cell therapy for treating neuropathic pain. However, further work is needed to address the challenges of MSC survival and excess proliferation, possibly with trials of autologous MSCs, evaluation of clonally selected populations of MSCs, and investigation of regulation of MSC proliferation.


Assuntos
Analgesia , Gânglios Espinais/transplante , Células-Tronco Mesenquimais/citologia , Neuralgia/terapia , Neurônios Aferentes/citologia , Analgesia/métodos , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Gânglios Espinais/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Neuralgia/genética , Neuralgia/metabolismo , Manejo da Dor/métodos , Ratos Sprague-Dawley , Nervos Espinhais/metabolismo
15.
Brain Res ; 1589: 112-25, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25251590

RESUMO

Mitochondria critically regulate cytoplasmic Ca(2+) concentration ([Ca(2+)]c), but the effects of sensory neuron injury have not been examined. Using FCCP (1µM) to eliminate mitochondrial Ca(2+) uptake combined with oligomycin (10µM) to prevent ATP depletion, we first identified features of depolarization-induced neuronal [Ca(2+)]c transients that are sensitive to blockade of mitochondrial Ca(2+) buffering in order to assess mitochondrial contributions to [Ca(2+)]c regulation. This established the loss of a shoulder during the recovery of the depolarization (K(+))-induced transient, increased transient peak and area, and elevated shoulder level as evidence of diminished mitochondrial Ca(2+) buffering. We then examined transients in Control neurons and neurons from the 4th lumbar (L4) and 5th lumbar (L5) dorsal root ganglia after L5 spinal nerve ligation (SNL). The SNL L4 neurons showed decreased transient peak and area compared to control neurons, while the SNL L5 neurons showed increased shoulder level. Additionally, SNL L4 neurons developed shoulders following transients with lower peaks than Control neurons. Application of FCCP plus oligomycin elevated resting [Ca(2+)]c in SNL L4 neurons more than in Control neurons. Whereas application of FCCP plus oligomycin 2s after neuronal depolarization initiated mitochondrial Ca(2+) release in most Control and SNL L4 neurons, this usually failed to release mitochondrial Ca(2+) from SNL L5 neurons. For comparable cytoplasmic Ca(2+) loads, the releasable mitochondrial Ca(2+) in SNL L5 neurons was less than Control while it was increased in SNL L4 neurons. These findings show diminished mitochondrial Ca(2+) buffering in axotomized SNL L5 neurons but enhanced Ca(2+) buffering by neurons in adjacent SNL L4 neurons.


Assuntos
Cálcio/metabolismo , Gânglios Espinais/lesões , Gânglios Espinais/metabolismo , Mitocôndrias/metabolismo , Nociceptores/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Axotomia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Neuralgia/etiologia , Neuralgia/metabolismo , Oligomicinas/farmacologia , Ratos Sprague-Dawley
16.
Mol Cell Neurosci ; 62: 10-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25064143

RESUMO

Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0µM) reduced depolarization-induced ICa by 16-30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by the efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent.


Assuntos
Canais de Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Gânglios Espinais/citologia , Células Receptoras Sensoriais/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Masculino , Potenciais da Membrana/fisiologia , Neurônios Aferentes/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos
17.
J Pharmacol Exp Ther ; 350(2): 290-300, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891452

RESUMO

Sigma-1 receptor (σ1R), an endoplasmic reticulum-chaperone protein, can modulate painful response after peripheral nerve injury. We have demonstrated that voltage-gated calcium current is inhibited in axotomized sensory neurons. We examined whether σ1R contributes to the sensory dysfunction of voltage-gated calcium channel (VGCC) after peripheral nerve injury through electrophysiological approach in dissociated rat dorsal root ganglion (DRG) neurons. Animals received either skin incision (Control) or spinal nerve ligation (SNL). Both σ1R agonists, (+)pentazocine (PTZ) and DTG [1,3-di-(2-tolyl)guanidine], dose dependently inhibited calcium current (ICa) with Ba(2+) as charge carrier in control sensory neurons. The inhibitory effect of σ1R agonists on ICa was blocked by σ1R antagonist, BD1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-m​ethylpiperazine dihydrochloride) or BD1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-m​ethyl-2-(dimethylamino)ethylamine dihydrobromide). PTZ and DTG showed similar effect on ICa in axotomized fifth DRG neurons (SNL L5). Both PTZ and DTG shifted the voltage-dependent activation and steady-state inactivation of VGCC to the left and accelerated VGCC inactivation rate in both Control and axotomized L5 SNL DRG neurons. The σ1R antagonist, BD1063 (10 µM), increases ICa in SNL L5 neurons but had no effect on Control and noninjured fourth lumbar neurons in SNL rats. Together, the findings suggest that activation of σR1 decreases ICa in sensory neurons and may play a pivotal role in pain generation.


Assuntos
Canais de Cálcio/fisiologia , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Canais de Potássio Cálcio-Ativados/fisiologia , Receptores sigma/antagonistas & inibidores , Células Receptoras Sensoriais/fisiologia , Animais , Etilenodiaminas/farmacologia , Gânglios Espinais/fisiologia , Masculino , Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores sigma/fisiologia , Receptor Sigma-1
18.
Mol Pain ; 9: 47, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24015960

RESUMO

BACKGROUND: The sigma-1 receptor (σ1R), an endoplasmic reticulum chaperone protein, is widely distributed and regulates numerous intracellular processes in neurons. Nerve injury alters the structure and function of axotomized dorsal root ganglion (DRG) neurons, contributing to the development of pain. The σ1R is enriched in the spinal cord and modulates pain after peripheral nerve injury. However, σ1R expression in the DRG has not been studied. We therefore characterized σ1R expression in DRGs at baseline and following spinal nerve ligation (SNL) in rats. RESULTS: Immunohistochemical (IHC) studies in DRG sections show σ1R in both neuronal somata and satellite glial cells. The punctate distribution of σ1R in the neuronal cytoplasm suggests expression in the endoplasmic reticulum. When classified by neuronal size, large neurons (>1300 µm) showed higher levels of σ1R staining than other groups (700-1300 µm, <700 µm). Comparing σ1R expression in neuronal groups characterized by expression of calcitonin gene-related peptide (CGRP), isolectin-B4 (IB4) and neurofilament-200 (NF-200), we found σ1R expression in all three neuronal subpopulations, with highest levels of σ1R expression in the NF-200 group. After SNL, lysates from L5 DRGs that contains axotomized neurons showed decreased σ1R protein but unaffected transcript level, compared with Control DRGs. IHC images also showed decreased σ1R protein expression, in SNL L5 DRGs, and to a lesser extent in the neighboring SNL L4 DRGs. Neurons labeled by CGRP and NF-200 showed decreased σ1R expression in L5 and, to a lesser extent, L4 DRGs. In IB4-labeled neurons, σ1R expression decreased only in axotomized L5 DRGs. Satellite cells also showed decreased σ1R expression in L5 DRGs after SNL. CONCLUSIONS: Our data show that σ1R is present in both sensory neurons and satellite cells in rat DRGs. Expression of σ1R is down-regulated in axotomized neurons as well as in their accompanying satellite glial cells, while neighboring uninjured neurons show a lesser down-regulation. Therefore, elevated σ1R expression in neuropathic pain is not an explanation for pain relief after σ1R blockade. This implies that increased levels of endogenous σ1R agonists may play a role, and diminished neuroprotection from loss of glial σ1R may be a contributing factor.


Assuntos
Regulação da Expressão Gênica , Traumatismos dos Nervos Periféricos/metabolismo , Receptores sigma/genética , Receptores sigma/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Retículo Endoplasmático/metabolismo , Gânglios Espinais/metabolismo , Masculino , Proteínas de Neurofilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Células Satélites Perineuronais/metabolismo , Receptor Sigma-1
19.
J Neurosci ; 32(34): 11737-49, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22915116

RESUMO

Currents through voltage-gated Ca²âº channels (I(Ca)) may be regulated by cytoplasmic Ca²âº levels ([Ca²âº](c)), producing Ca²âº-dependent inactivation (CDI) or facilitation (CDF). Since I(Ca) regulates sensory neuron excitability, altered CDI or CDF could contribute to pain generation after peripheral nerve injury. We explored this by manipulating [Ca²âº](c) while recording I(Ca) in rat sensory neurons. In uninjured neurons, elevating [Ca²âº](c) with a conditioning prepulse (-15 mV, 2 s) inactivated I(Ca) measured during subsequent test pulses (-15 mV, 5 ms). This inactivation was Ca²âº-dependent (CDI), since it was decreased with elimination of Ca²âº influx by depolarization to above the I(Ca) reversal potential, with high intracellular Ca²âº buffering (EGTA 10 mm or BAPTA 20 mm), and with substitution of Ba²âº for extracellular Ca²âº, revealing a residual voltage-dependent inactivation. At longer latencies after conditioning (>6 s), I(Ca) recovered beyond baseline. This facilitation also proved to be Ca²âº-dependent (CDF) using the protocols limiting cytoplasmic Ca²âº elevation. Ca²âº/calmodulin-dependent protein kinase II (CaMKII) blockers applied by bath (KN-93, myristoyl-AIP) or expressed selectively in the sensory neurons (AIP) reduced CDF, unlike their inactive analogues. Protein kinase C inhibition (chelerythrine) had no effect. Selective blockade of N-type Ca²âº channels eliminated CDF, whereas L-type channel blockade had no effect. Following nerve injury, CDI was unaffected, but CDF was eliminated in axotomized neurons. Excitability of sensory neurons in intact ganglia from control animals was diminished after a similar conditioning pulse, but this regulation was eliminated by injury. These findings indicate that I(Ca) in sensory neurons is subject to both CDI and CDF, and that hyperexcitability following injury-induced loss of CDF may result from diminished CaMKII activity.


Assuntos
Fenômenos Biofísicos/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Neurônios Aferentes/fisiologia , Traumatismos dos Nervos Periféricos/patologia , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Biofísica , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Quelantes/farmacologia , Dantroleno/farmacologia , Interações Medicamentosas , Ácido Egtázico/análogos & derivados , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/citologia , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Laminectomia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/enzimologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
Mol Pain ; 8: 46, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22713297

RESUMO

BACKGROUND: The plasma membrane Ca2+-ATPase (PMCA) is the principal means by which sensory neurons expel Ca2+ and thereby regulate the concentration of cytoplasmic Ca2+ and the processes controlled by this critical second messenger. We have previously found that painful nerve injury decreases resting cytoplasmic Ca2+ levels and activity-induced cytoplasmic Ca2+ accumulation in axotomized sensory neurons. Here we examine the contribution of PMCA after nerve injury in a rat model of neuropathic pain. RESULTS: PMCA function was isolated in dissociated sensory neurons by blocking intracellular Ca2+ sequestration with thapsigargin, and cytoplasmic Ca2+ concentration was recorded with Fura-2 fluorometry. Compared to control neurons, the rate at which depolarization-induced Ca2+ transients resolved was increased in axotomized neurons after spinal nerve ligation, indicating accelerated PMCA function. Electrophysiological recordings showed that blockade of PMCA by vanadate prolonged the action potential afterhyperpolarization, and also decreased the rate at which neurons could fire repetitively. CONCLUSION: We found that PMCA function is elevated in axotomized sensory neurons, which contributes to neuronal hyperexcitability. Accelerated PMCA function in the primary sensory neuron may contribute to the generation of neuropathic pain, and thus its modulation could provide a new pathway for peripheral treatment of post-traumatic neuropathic pain.


Assuntos
Axotomia , Membrana Celular/enzimologia , Neuralgia/enzimologia , Neuralgia/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células Receptoras Sensoriais/enzimologia , Nervos Espinhais/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuralgia/fisiopatologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Trocador de Sódio e Cálcio/metabolismo , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/enzimologia , Nervos Espinhais/fisiopatologia , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...