Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(14): 7653-7660, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38532553

RESUMO

The zwitterionic groups possess strong dipole moments, leading to inter- or intrachain interactions among zwitterionic polymers. This study aims to demonstrate the interaction of polyzwitterions poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), and poly(carboxybetaine methacrylate) (PCBMA) with electrified surfaces, despite their electrically neutral nature. We studied the adsorption of polyzwitterions and their monomers on electrified surfaces by using an electrochemical quartz crystal microbalance with dissipation (EQCM-D). The interaction between zwitterionic molecules and charged surfaces is explored by adjusting the surface potentials. Interestingly, the adsorption of polyzwitterions can be influenced by external potential, primarily due to the formation of polyzwitterions restricting the mobility of zwitterionic groups, affecting the adsorption behavior of polyzwitterions based on the surface potential. The impact is determined by the arrangement of positive and negative ions within the zwitterionic groups, which are the dipole orientation. Additionally, surface potentials determine the adsorption rate, amount, and chain conformation of the adsorbed thin polyzwitterion layers. The effect of ionic strength was investigated by introducing electrolytes into the aqueous solutions to assess the range of influenced surface potentials.

2.
Soft Matter ; 18(4): 722-725, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019926

RESUMO

A hydrogel surface with a nano-phase-separated structure was successfully fabricated by grafting a fluorine-containing polymer using activators regenerated by electron transfer atom transfer radical polymerisation (ARGET ATRP). The modified hydrogel surface exhibits water repellency and high elasticity with maintaining transparency.

3.
J Mater Chem B ; 10(14): 2504-2511, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35018937

RESUMO

Electrochemical techniques are highly sensitive and label-free sensing methods for the detection of various biomarkers, toxins, or pathogens. An ideal sensing element should be electroconductive, nonfouling, and readily available for conjugation of ligands. In this work, we have developed a facile, one-step electrodeposition method based on pyrogallol polymerization for preparation of a nonfouling and biotinylated surface on indium tin oxide (ITO). A copolymer of sulfobetaine methacrylate and aminoethyl methacrylate (pSBAE) was synthesized and deposited on ITO in the presence of pyrogallol via cyclic voltammetry. The deposition took less than 15 minutes to sufficiently inhibit cell adhesion. Using biotinylated pSBAE, the modified surface resisted nonspecific protein adsorption from the fetal bovine serum solution and detected added avidin concentrations. The results show an efficient platform to fabricate an electrochemical biosensor for the detection of biomarkers. We expect that this facile one-step technology could be applied to conjugate various biosensing elements for nonfouling biosensors.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Incrustação Biológica/prevenção & controle , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Polímeros , Pirogalol
4.
ACS Appl Mater Interfaces ; 11(24): 21294-21307, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31120722

RESUMO

Conducting polymers are considered to be favorable electrode materials for implanted biosensors and bioelectronics, because their mechanical properties are similar to those of biological tissues such as nerve and brain tissues. However, one of the primary challenges for implanted devices is to prevent the unwanted protein adhesion or cell binding within biological fluids. The nonspecific adsorption generally causes the malfunction of implanted devices, which is problematic for long-term applications. When responding to the requirements of solving the problems caused by nonspecific adsorption, an increasing number of studies on antifouling conducting polymers has been recently published. In this review, synthetic strategies for preparing antifouling conducting polymers, including direct synthesis of functional monomers and post-functionalization, are introduced. The applications of antifouling conducting polymers in modern biomedical applications are particularly highlighted. This paper presents focuses on the features of antifouling conducting polymers and the challenges of modern biomedical applications.


Assuntos
Polímeros/química , Polímeros/farmacologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Técnicas Biossensoriais , Eletroquímica , Camundongos , Biologia Molecular , Células NIH 3T3 , Fosforilcolina/química , Propriedades de Superfície
5.
Langmuir ; 34(3): 943-951, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29120646

RESUMO

C-reactive protein (CRP), a biomarker for cardiovascular disease, has been reported to have a strong affinity to zwitterionic phosphorylcholine (PC) groups in the presence of calcium ions. In addition, PC-immobilized surfaces have been used as a nonfouling coating to prevent nonspecific protein binding. By appropriately using the features of PC-immobilized surfaces, including specific recognition to CRP and nonfouling surface, it is reasonable to create an antibody-free biosensor for the specific capture of CRP. In this study, PC-functionalized 3,4-ethylenedioxythiophene (EDOT) monomers were used to prepare PC-immobilized surfaces. The density of PC groups on the surface can be fine-tuned by changing the composition of the monomer solutions for the electropolymerization. The density of PC group was confirmed by X-ray photoelectron spectroscopy (XPS). The specific interaction of CRP with PC groups was monitored by using a quartz crystal microbalance with dissipation (QCM-D). The amount of protein binding could be estimated by the reduction in frequency readout. Through the QCM-D measurement, we revealed the nonfouling property and the specific CRP capture from our PC-immobilized surfaces. Notably, the dissipation energy also dropped during the binding process between CRP and PC, indicating the release of water molecules from the PC groups during CRP adsorption. We anticipate that surface-bound water molecules are mainly released from areas near the immobilized PC groups. Based on Hofmeister series, we further examined the influence of ions by introducing four different anions including both kosmotrope (order maker) and chaotrope (disorder maker) into the buffer for the CRP binding test. The results showed that the concentration and the type of anions play an important role in CRP binding. The present fundamental study reveals deep insights into the recognition between CRP and surface-immobilized PC groups, which can facilitate the development of CRP sensing platforms.


Assuntos
Proteína C-Reativa/química , Fosforilcolina/química , Técnicas de Microbalança de Cristal de Quartzo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Bovinos , Polímeros/química , Ligação Proteica , Propriedades de Superfície
6.
Macromol Biosci ; 18(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29231281

RESUMO

Neural tissue engineering has become a potential technology to restore the functionality of damaged neural tissue with the hope to cure the patients with neural disorder and to improve their quality of life. This paper reports the design and synthesis of polypeptides containing neuron stimulate, glutamic acid, for the fabrication of biomimetic 3D scaffold in neural tissue engineering application. The polypeptides are synthesized by efficient chemical reactions. Monomer γ-benzyl glutamate-N-carboxyanhydride undergoes ring-opening polymerization to form poly(γ-benzyl-l-glutamate), then hydrolyzes into poly(γ-benzyl-l-glutamate)-r-poly(glutamic acid) random copolymer. The glutamic acid amount is controlled by hydrolysis time. The obtained polymer molecular weight is in the range of 200 kDa for good quality of fibers. The fibrous 3D scaffolds of polypeptides are fabricated using electrospinning techniques. The scaffolds are biodegradable and biocompatible. The biocompatibility and length of neurite growth are improved with increasing amount of glutamic acid in scaffold. The 3D scaffold fabricated from aligned fibers can guide anisotropic growth of neurite along the fiber and into 3D domain. Furthermore, the length of neurite outgrowth is longer for scaffold made from aligned fibers as compared with that of isotropic fibers. This new polypeptide has potential for the application in the tissue engineering for neural regeneration.


Assuntos
Regeneração Nervosa , Ácido Poliglutâmico , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Neurônios , Células PC12 , Ratos
7.
ACS Appl Mater Interfaces ; 8(34): 22688-95, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27509480

RESUMO

We developed a novel approach for hydrophobic patterning: combining the photolithography technique with ionic-liquid (IL)-based electropolymerization to fabricate a hydrophobic pattern. Perfluoro-functionalized 3,4-ethylenedioxythiophene (EDOT-F) dispersed in ILs was directly electropolymerized on substrates, which were patterned in advance with positive photoresists. The positive photoresists did not dissolve in ionic liquids during the electropolymerization process, and the poly(EDOT-F) film created hydrophobic domains, which resulted in hydrophobic patterning. This approach provides desired patterns with a lateral resolution consistent with the mask for photolithography. Two kinds of modified indium-tin-oxide-coated glass (ITO-glass) substrates were used to demonstrate the feasibility of process for creating a hydrophobic pattern: ITO-glass substrates coated with nanostructured PEDOT, and the same substrates coated with Au nanoparticles. By confining water droplets on these two patterned substrates to form droplet arrays, we demonstrated two potential applications: multiple droplet-type electrochemical cells and surface-enhanced Raman scattering platforms. In addition, we also applied this approach to create hydrophobic patterning on ITO-coated polyethylene terephthalate (ITO-PET) substrates. The droplet arrays remained well-organized on the ITO-PET substrates even when the substrates were bent. Our work successfully introduced ILs into the photolithography process, implying great potential for these green solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...