Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
J Ovarian Res ; 17(1): 185, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272131

RESUMO

BACKGROUND: In-depth understanding of dynamic expression profiles of human granulosa cells (GCs) during follicular development will contribute to the diagnostic and targeted interventions for female infertility. However, genome-scale analysis of long non-coding ribonucleic acid (lncRNA) in GCs across diverse developmental stages is challenging. Meanwhile, further research is needed to determine how aberrant lncRNA expression participates in ovarian diseases. METHODS: Granulosa cell-related lncRNAs data spanning five follicular development stages were retrieved and filtered from the NCBI dataset (GSE107746). Stage-specific lncRNA expression patterns and mRNA-lncRNA co-expression networks were identified with bioinformatic approaches. Subsequently, the expression pattern of SNHG18 was detected in GCs during ovarian aging. And SNHG18 siRNA or overexpression plasmids were transfected to SVOG cells in examining the regulatory roles of SNHG18 in GC proliferation and apoptosis. Moreover, whether PKCɛ/SNHG18 signaling take part in GC glycolysis via ENO1 were verified in SVOG cells. RESULTS: We demonstrated that GC-related lncRNAs were specifically expressed across different developmental stages, and coordinated crucial biological functions like mitotic cell cycle and metabolic processes in the folliculogenesis. Thereafter, we noticed a strong correlation of PRKCE and SNHG18 expression in our analysis. With downregulated SNHG18 of GCs identified in the context of ovarian aging, SNHG18 knockdown could further induce cell apoptosis, retard cell proliferation and exacerbate DNA damage in SVOG cell. Moreover, downregulated PKCɛ/SNHG18 pathway interrupted the SVOG cell glycolysis by lowering the ENO1 expression. CONCLUSIONS: Altogether, our results revealed that folliculogenesis-related lncRNA SNHG18 participated in the pathogenesis of ovarian aging, which may provide novel biomarkers for ovarian function and new insights for the infertility treatment.


Assuntos
Apoptose , Glicólise , Células da Granulosa , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células da Granulosa/metabolismo , Apoptose/genética , Glicólise/genética , Ovário/metabolismo , Ovário/patologia , Envelhecimento/genética , Envelhecimento/metabolismo
2.
BMC Genom Data ; 25(1): 80, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223463

RESUMO

BACKGROUND: The tribe Ampelopsideae plants are important garden plants with both medicinal and ornamental values. The study of codon usage bias (CUB) facilitates a deeper comprehension of the molecular genetic evolution of species and their adaptive strategies. The joint analysis of CUB in chloroplast genomes (cpDNA) offers valuable insights for in-depth research on molecular genetic evolution, biological resource conservation, and elite breeding within this plant family. RESULTS: The base composition and codon usage preferences of the eighteen chloroplast genomes were highly similar, with the GC content of bases at all positions of their codons being less than 50%. This indicates that they preferred A/T bases. Their effective codon numbers were all in the range of 35-61, which indicates that the codon preferences of the chloroplast genomes of the 18 Ampelopsideae plants were relatively weak. A series of analyses indicated that the codon preference of the chloroplast genomes of the 18 Ampelopsideae plants was influenced by a combination of multiple factors, with natural selection being the primary influence. The clustering tree generated based on the relative usage of synonymous codons is consistent with some of the results obtained from the phylogenetic tree of chloroplast genomes, which indicates that the clustering tree based on the relative usage of synonymous codons can be an important supplement to the results of the sequence-based phylogenetic analysis. Eventually, 10 shared best codons were screened on the basis of the chloroplast genomes of 18 species. CONCLUSION: The codon preferences of the chloroplast genome in Ampelopsideae plants are relatively weak and are primarily influenced by natural selection. The codon composition of the chloroplast genomes of the eighteen Ampelopsideae plants and their usage preferences were sufficiently similar to demonstrate that the chloroplast genomes of Ampelopsideae plants are highly conserved. This study provides a scientific basis for the genetic evolution of chloroplast genes in Ampelopsideae species and their suitable strategies.


Assuntos
Uso do Códon , Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Evolução Molecular , Composição de Bases/genética , Códon/genética
3.
Acta Biomater ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209131

RESUMO

Oral aphthous ulcers are common mucosal lesions that cause pain and discomfort. There are diverse biomaterials and drug treatments for oral ulcers used in both research and clinical settings. However, the complex oral environment often results in low adhesion and short drug retention times, which lead to poor drug availability and treatment outcomes. In this study, a mussel-inspired adhesive hydrogel was developed by grafting catechol onto hyaluronic acid (C-HA), and dopamine was added for oxidative pre-polymerization to form modified hyaluronic acid (M-HA), which remarkably increased the adhesion of the hydrogels. Then, M-HA was interpenetrated into the gelatin methacryloyl (GelMA) network. Chlorhexidine gluconate (CHG) was then incorporated into the hydrogel to enhance its availability and therapeutic effect through its sustained-release capability. The GelMA/M-HA hydrogel demonstrated strong adhesion to wet tissues, antibacterial and anti-inflammatory properties, and good biocompatibility. In both rat oral ulcers and infected wounds, the adhesive hydrogel significantly accelerated the healing of the ulcers and infected wounds. These results indicated that this adhesive hydrogel offers a promising new strategy for the treatment of oral ulcers in clinical practice. STATEMENT OF SIGNIFICANCE: Oral ulcers are a common and high-incidence mucosal condition that seriously affect people's daily lives, often making it difficult for patients to chew and speak. However, a dynamic oral environment with various types of bacteria influences drug availability and treatment effects in clinical settings. To address this challenge, an adhesive, mussel-inspired, drug-loaded hydrogel was constructed using natural macromolecules (hyaluronic acid and gelatin) with good biocompatibility. Chlorhexidine gluconate (CHG), with its broad-spectrum antibacterial activity, has been incorporated to synergistically promote oral ulcer healing. The splendid adhesion, antibacterial, and therapeutic effects of this hydrogel demonstrated a new strategy for treating oral ulcers.

4.
Front Oncol ; 14: 1383323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119093

RESUMO

Purpose: A systematic review and meta-analysis were conducted to evaluate the diagnostic precision of radiomics in the differential diagnosis of parotid tumors, considering the increasing utilization of radiomics in tumor diagnosis. Although some researchers have attempted to apply radiomics in this context, there is ongoing debate regarding its accuracy. Methods: Databases of PubMed, Cochrane, EMBASE, and Web of Science up to May 29, 2024 were systematically searched. The quality of included primary studies was assessed using the Radiomics Quality Score (RQS) checklist. The meta-analysis was performed utilizing a bivariate mixed-effects model. Results: A total of 39 primary studies were incorporated. The machine learning model relying on MRI radiomics for diagnosis malignant tumors of the parotid gland, demonstrated a sensitivity of 0.80 [95% CI: 0.74, 0.86], SROC of 0.89 [95% CI: 0.27-0.99] in the validation set. The machine learning model based on MRI radiomics for diagnosis malignant tumors of the parotid gland, exhibited a sensitivity of 0.83[95% CI: 0.76, 0.88], SROC of 0.89 [95% CI: 0.17-1.00] in the validation set. The models also demonstrated high predictive accuracy for benign lesions. Conclusion: There is great potential for radiomics-based models to improve the accuracy of diagnosing benign and malignant tumors of the parotid gland. To further enhance this potential, future studies should consider implementing standardized radiomics-based features, adopting more robust feature selection methods, and utilizing advanced model development tools. These measures can significantly improve the diagnostic accuracy of artificial intelligence algorithms in distinguishing between benign and malignant tumors of the parotid gland. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023434931.

5.
BMC Geriatr ; 24(1): 653, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097684

RESUMO

BACKGROUND: With the advent of the smart phone era, managing blood glucose at home through apps will become more common for older individuals with diabetes. Adult children play important roles in glucose management of older parents. Few studies have explored how adult children really feel about engaging in the glucose management of their older parents with type 2 diabetes mellitus (T2DM) through mobile apps. This study provides insights into the role perceptions and experiences of adult children of older parents with T2DM participating in glucose management through mobile apps. METHODS: In this qualitative study, 16 adult children of older parents with T2DM, who had used mobile apps to manage blood glucose for 6 months, were recruited through purposive sampling. Semi-structured, in-depth, face-to-face interviews to explore their role perceptions and experiences in remotely managing their older parents' blood glucose were conducted. The Consolidated Criteria for Reporting Qualitative Research (COREQ) were followed to ensure rigor in the study. The data collected were analyzed by applying Colaizzi's seven-step qualitative analysis method. RESULTS: Six themes and eight sub-themes were identified in this study. Adult children's perceived roles in glucose management of older parents with T2DM through mobile apps could be categorized into four themes: health decision-maker, remote supervisor, health educator and emotional supporter. The experiences of participation could be categorized into two themes: facilitators to participation and barriers to participation. CONCLUSION: Some barriers existed for adult children of older parents with T2DM participating in glucose management through mobile apps; however, the findings of this study were generally positive. It was beneficial and feasible for adult children to co-manage the blood glucose of older parents. Co-managing blood glucose levels in older parents with T2DM can enhance both adherence rates and confidence in managing blood glucose effectively.


Assuntos
Filhos Adultos , Diabetes Mellitus Tipo 2 , Aplicativos Móveis , Pais , Pesquisa Qualitativa , Humanos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/psicologia , Diabetes Mellitus Tipo 2/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Pais/psicologia , Filhos Adultos/psicologia , Adulto , Idoso , Glicemia/metabolismo , Automonitorização da Glicemia/métodos , Automonitorização da Glicemia/psicologia
6.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39201782

RESUMO

The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.


Assuntos
Microbioma Gastrointestinal , Neoplasias Gastrointestinais , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/microbiologia , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/imunologia , Animais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
7.
Food Chem ; 460(Pt 3): 140749, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142204

RESUMO

Reactive carbonyl species can modify digestive enzymes upon intake due to their electrophilic nature. This study evaluated the effects of methylglyoxal (MGO), glyoxal, acrolein, and formaldehyde on invertase, an enzyme presents in digestive tract. Unexpectedly, MGO enhanced, rather than inhibited, invertase activity. Moreover, MGO counteracted the inhibitory effects of the other three carbonyls on invertase activity. Kinetic analyses revealed that 150 mmolLexp.-1 MGO resulted in a 2-fold increase in the Km and a 3.3-fold increase in Vmax, indicating that MGO increased the turnover rate of sucrose while reducing the substrate binding affinity of invertase. Additionally, MGO induced dynamic quenching of fluorescence, reduced free amino groups, increased hydrophobicity, the content of Amadori products, fluorescent and nonfluorescent AGEs, and amyloid fibrils of invertase. The specific modifications responsible for the elevated activity of MGO on invertase require further investigation.


Assuntos
Aldeído Pirúvico , beta-Frutofuranosidase , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Cinética , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , Biocatálise , Catálise
8.
J Agric Food Chem ; 72(31): 17343-17355, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39024058

RESUMO

ERAP1 is an emerging target for a large subclass of severe autoimmune diseases known as "MHC-I-opathy", together with tumor immunity. Nevertheless, effective inhibitors targeting ERAP1 remain a challenge. In this study, a novel food-derived natural product ERAP1-targeting inhibitor, carnosic acid, was identified, and to our knowledge, it is one of the best active compounds among the highly selective inhibitors targeting the orthosteric site of ERAP1. The results reveal that carnosic acid could bind strongly, like a key to the ERAP1 active site in the biased S1' pocket, which is different from the binding mode of the existing orthosteric site inhibitors. HLA-B27-mediated cell modeling validated that carnosic acid has the activity to reverse the AS-associated cellular phenotype brought on by ERAP1 through inhibition. Our findings provide insights into the design of potent inhibitors against the ERAP1 orthosteric site and the discovery of a key direct target of carnosic acid.


Assuntos
Abietanos , Aminopeptidases , Apresentação de Antígeno , Antígenos de Histocompatibilidade Menor , Abietanos/farmacologia , Abietanos/química , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/imunologia , Aminopeptidases/metabolismo , Aminopeptidases/química , Ligação Proteica , Sítios de Ligação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular
9.
Nanomaterials (Basel) ; 14(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998675

RESUMO

Conventional coalbed methane (CBM) reservoir models for injection fall-off testing often disregard the quadratic pressure gradient's impact. This omission leads to discrepancies in simulating the transient behavior of formation fluids and extracting critical reservoir properties. Accurate determination of permeability, storability, and other properties is crucial for effective reservoir characterization and production forecasting. Inaccurate estimations can lead to suboptimal well placement, ineffective production strategies, and ultimately, missed economic opportunities. To address this shortcoming, we present a novel analytical model that explicitly incorporates the complexities of the quadratic pressure gradient and dual-permeability flow mechanisms, prevalent in many CBM formations where nanopores are rich, presenting a kind of natural nanomaterial. This model offers significant advantages over traditional approaches. By leveraging variable substitution, it facilitates the derivation of analytical solutions in the Laplace domain, subsequently converted to real-space solutions for practical application. These solutions empower reservoir engineers to generate novel type curves, a valuable tool for analyzing wellbore pressure responses during injection fall-off tests. By identifying distinct flow regimes within the reservoir based on these type curves, engineers gain valuable insights into the dynamic behavior of formation fluids. This model goes beyond traditional approaches by investigating the influence of the quadratic pressure gradient coefficient, inter-porosity flow coefficient, and storability ratio on the pressure response. A quantitative comparison with traditional models further elucidates the key discrepancies caused by neglecting the quadratic pressure gradient. The results demonstrate the proposed model's ability to accurately depict the non-linear flow behavior observed in CBM wells. This translates to more reliable pressure and pressure derivative curves that account for the impact of the quadratic pressure gradient.

10.
Food Chem X ; 23: 101551, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974199

RESUMO

Sweet potatoes are rich in flavonoids and phenolic acids, showing incomparable nutritional and health value. In this investigation, we comprehensively analyzed the secondary metabolite profiles in the flesh of different-colored sweet potato flesh. We determined the metabolomic profiles of white sweet potato flesh (BS), orange sweet potato flesh (CS), and purple sweet potato flesh (ZS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CS vs. BS, ZS vs. BS, and ZS vs. CS comparisons identified a total of 4447 secondary metabolites, including 1540, 1949, and 1931 differentially accumulated metabolites. Among them, there were significant differences in flavonoids and phenolic acids. There were 20 flavonoids and 13 phenolic acids that were common differential metabolites among the three comparison groups. The accumulation of paeoniflorin-like and delphinidin-like compounds may be responsible for the purple coloration of sweet potato flesh. These findings provide new rationale and insights for the development of functional foods for sweet potatoes. List of compounds: Kaempferol (PubChem CID: 5280863); Peonidin 3-(6"-p-coumarylglucoside) (PubChem CID: 44256849); Swerchirin (PubChem CID: 5281660); Trilobatin (PubChem CID: 6451798); 3-Geranyl-4-hydroxybenzoate (PubChem CID: 54730540); Eupatorin (PubChem CID: 97214); Icaritin (PubChem CID: 5318980); Isorhamnetin (PubChem CID: 5281654); Glucoliquiritin apioside (PubChem CID: 74819335); Brazilin (PubChem CID: 73384).

11.
Front Endocrinol (Lausanne) ; 15: 1354214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948525

RESUMO

Background: Polycystic ovary syndrome (PCOS) is both a common endocrine syndrome and a metabolic disorder that results in harm to the reproductive system and whole-body metabolism. This study aimed to investigate differences in the serum metabolic profiles of patients with PCOS compared with healthy controls, in addition to investigating the effects of compound oral contraceptive (COC) treatment in patients with PCOS. Materials and methods: 50 patients with PCOS and 50 sex-matched healthy controls were recruited. Patients with PCOS received three cycles of self-administered COC treatment. Clinical characteristics were recorded, and the laboratory biochemical data were detected. We utilized ultra-performance liquid chromatography-high-resolution mass spectrometry to study the serum metabolic changes between patients with PCOS, patients with PCOS following COC treatment, and healthy controls. Result: Patients with PCOS who received COC treatment showed significant improvements in serum sex hormone levels, a reduction in luteinising hormone levels, and a significant reduction in the levels of biologically active free testosterone in the blood. Differential metabolite correlation analysis revealed differences between PCOS and healthy control groups in N-tetradecanamide, hexadecanamide, 10E,12Z-octadecadienoic acid, and 13-HOTrE(r); after 3 months of COC treatment, there were significant differences in benzoic acid, organic acid, and phenolamides. Using gas chromatography-mass spectrometry to analyse blood serum in each group, the characteristic changes in PCOS were metabolic disorders of amino acids, carbohydrates, and purines, with significant changes in the levels of total cholesterol, uric acid, phenylalanine, aspartic acid, and glutamate. Conclusion: Following COC treatment, improvements in sex hormone levels, endocrine factor levels, and metabolic levels were better than in the group of PCOS patients receiving no COC treatment, indicating that COC treatment for PCOS could effectively regulate the levels of sex hormones, endocrine factors, and serum metabolic profiles.


Assuntos
Metabolômica , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Feminino , Metabolômica/métodos , Adulto , Adulto Jovem , Estudos de Casos e Controles , Metaboloma/efeitos dos fármacos , Testosterona/sangue , Anticoncepcionais Orais/uso terapêutico , Anticoncepcionais Orais Combinados/uso terapêutico , Biomarcadores/sangue
12.
Actas Esp Psiquiatr ; 52(3): 365-374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863055

RESUMO

Alzheimer's disease (AD), the most common form of dementia, has a complex pathogenesis. The number of AD patients has increased in recent years due to population aging, while a trend toward a younger age of onset has arisen, imposing a substantial burden on society and families, and garnering extensive attention. DNA methylation has recently been revealed to play an important role in AD onset and progression. DNA methylation is a critical mechanism regulating gene expression, and alterations in this mechanism dysregulate gene expression and disrupt important pathways, including oxidative stress responses, inflammatory reactions, and protein degradation processes, eventually resulting in disease. Studies have revealed widespread changes in AD patients' DNA methylation in the peripheral blood and brain tissues, affecting multiple signaling pathways and severely impacting neuronal cell and synaptic functions. This review summarizes the role of DNA methylation in the pathogenesis of AD, aiming to provide a theoretical basis for its early prevention and treatment.


Assuntos
Doença de Alzheimer , Metilação de DNA , Epigênese Genética , Humanos , Doença de Alzheimer/genética
13.
Biomimetics (Basel) ; 9(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38921196

RESUMO

The besiege and conquer algorithm has shown excellent performance in single-objective optimization problems. However, there is no literature on the research of the BCA algorithm on multi-objective optimization problems. Therefore, this paper proposes a new multi-objective besiege and conquer algorithm to solve multi-objective optimization problems. The grid mechanism, archiving mechanism, and leader selection mechanism are integrated into the BCA to estimate the Pareto optimal solution and approach the Pareto optimal frontier. The proposed algorithm is tested with MOPSO, MOEA/D, and NSGAIII on the benchmark function IMOP and ZDT. The experiment results show that the proposed algorithm can obtain competitive results in terms of the accuracy of the Pareto optimal solution.

14.
Plants (Basel) ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891365

RESUMO

The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.

15.
Angew Chem Int Ed Engl ; 63(35): e202409000, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38866731

RESUMO

M-N-C single-atom catalysts (SACs) are promising electrode materials for many electro-reduction reactions. However, their stability is far from practical applications, and their deactivation mechanism has been rarely investigated. Herein, we demonstrate the structural degradation of M-N-C (M=Co, Ni, and Fe) at industrial-grade current density for long-term electro-reduction. Both M-N and N-C bonds are broken, resulting in the gradual hydrogenation and dissolution of N in the form of ammonia. The residual M is finally converted to M-containing core-shell nanoparticles after sequential dissolution, redeposition, and electro-reduction. The destruction of the M-N-C structure and the formation of nanoparticles greatly affect the electrocatalytic performance. Our work highlights the structural degradation and deactivation mechanism of M-N-C-type SACs under strong reductive conditions and provides useful information for inspiring researchers to develop new strategies to improve the electrocatalytic stability of similar types of materials.

16.
Adv Healthc Mater ; 13(22): e2400675, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38843486

RESUMO

Implantable sensors, especially ion sensors, facilitate the progress of scientific research and personalized healthcare. However, the permanent retention of implants induces health risks after sensors fulfill their mission of chronic sensing. Biodegradation is highly anticipated; while; biodegradable chemical sensors are rare due to concerns about the leakage of harmful active molecules after degradation, such as ionophores. Here, a novel biodegradable fiber calcium ion sensor is introduced, wherein ionophores are covalently bonded with bioinert nanoparticles to replace the classical ion-selective membrane. The fiber sensor demonstrates comparable sensing performance to classical ion sensors and good flexibility. It can monitor the fluctuations of Ca2+ in a 4-day lifespan in vivo and biodegrade in 4 weeks. Benefiting from the stable bonding between ionophores and nanoparticles, the biodegradable sensor exhibits a good biocompatibility after degradation. Moreover, this approach of bonding active molecules on bioinert nanoparticles can serve as an effective methodology for minimizing health concerns about biodegradable chemical sensors.


Assuntos
Cálcio , Nanopartículas , Nanopartículas/química , Cálcio/química , Animais , Camundongos , Materiais Biocompatíveis/química , Implantes Absorvíveis , Íons/química , Técnicas Biossensoriais/métodos
17.
Front Cell Infect Microbiol ; 14: 1350181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803569

RESUMO

Objectives: This study aimed to explore the effects of removable aligners and fixed appliances on the supragingival bacterial communities in adult female patients undergoing orthodontic treatment. Methods: Supragingival plaque samples from 48 female individuals underwent microbiome analysis (16S rRNA gene sequencing) using PacBio Sequel sequencing. The study included 13 adults without orthodontic treatment needs as the control group (Group C), and 35 patients with comparable initial orthodontic conditions who received treatment at a university clinic in Beijing, China. The treatment involved either traditional fixed brackets (Group B, n = 17) or Invisalign® aligners (Group AT, n = 18). Bioinformatics methods were used for data analysis. Results: From the 48 plaque samples, a total of 334,961 valid reads were obtained, averaging 6,978 sequences per sample. The 16S rDNA sequences were classified into 25,727 amplicon sequence variants (ASVs). Significant variances in alpha and beta diversity among the groups were noted. Group B microbiome exhibited an increased presence of Gram-negative bacteria. At the phylum level, Actinobacteriota was significantly more prevalent in Group C samples, while Bacteroidota was enriched in Group B samples. Family-level relative abundance analysis showed a notable increase in Saccharibacteria (formerly TM7) and Prevotellaceae in Group B. Genus-level analysis revealed a significant rise in Lautropia in Group AT. Fixed orthodontic appliances were linked to oral microbiome changes, notably an enhanced relative abundance of anaerobes, including periodontal pathogens. Conclusion: The observation points to the impact of orthodontic appliance on the oral microbial community, highlighting the difference between traditional braces (Group B) and clear aligners (Group AT)in terms of the predominance of anaerobic and gram negative bacteria. This emphasizes the importance of considering the microbiological effects when choosing orthodontic appliance and underscores the need for tailored oral hygiene practices for individuals undergoing these treatments. This research might provide insights that could assist in the development of innovative cleaning techniques and antibacterial materials.


Assuntos
Bactérias , Placa Dentária , Má Oclusão , Microbiota , Aparelhos Ortodônticos Fixos , RNA Ribossômico 16S , Humanos , Feminino , Estudos Transversais , Adulto , Placa Dentária/microbiologia , RNA Ribossômico 16S/genética , Adulto Jovem , Má Oclusão/terapia , Má Oclusão/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , China , Aparelhos Ortodônticos Removíveis/microbiologia
18.
Microorganisms ; 12(5)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38792853

RESUMO

The Enterobacter cancerogenus strain EcHa1 was isolated from the dead larvae of Helicoverpa armigera, and has the potential for biocontrol of some Lepidoptera insects. In order to screen insecticidal-related genes by qRT-PCR, stable endogenous reference genes used for normalizing qRT-PCR data were selected and evaluated from 13 housekeeping genes (HKGs). The expression levels of the HKGs were determined using qRT-PCR under different experimental conditions, including two culture temperatures and three bacterial OD values. Five stability analysis methods (Ct, BestKeeper, NormFinder, geNorm, and RefFinder) were used to comprehensively rank the candidate genes. The results showed that the optimal reference genes varied under different experimental conditions. The combination of gyrA and gyrB was recommended as the best reference gene combination at 28 °C, while gyrA and rpoB was the best combination at 37 °C. When the OD values were 0.5, 1.0 and 2.0, the recommended reference gene combinations were ftsZ and gyrA, rpoB and gyrB, and gyrA and pyk, respectively. The most suitable reference genes were gyrA and gyrB under all experimental conditions. Using gyrA and gyrB as the reference genes for qRT-PCR, EcHa1 was found to invade all tissues of the H. armigera larvae, and expressed a candidate pathogenic factor Hcp at high levels in gut, Malpighian tubules, and epidermis tissues. This study not only establishes an accurate and reliable normalization for qRT-PCR in entomopathogenic bacteria but also lays a solid foundation for further study of functional genes in E. cancerogenus.

20.
J Virol ; 98(5): e0178423, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38624229

RESUMO

Novel respiratory viruses can cause a pandemic and then evolve to coexist with humans. The Omicron strain of severe acute respiratory syndrome coronavirus 2 has spread worldwide since its emergence in late 2021, and its sub-lineages are now established in human society. Compared to previous strains, Omicron is markedly less invasive in the lungs and causes less severe disease. One reason for this is that humans are acquiring immunity through previous infection and vaccination, but the nature of the virus itself is also changing. Using our newly established low-volume inoculation system, which reflects natural human infection, we show that the Omicron strain spreads less efficiently into the lungs of hamsters compared with an earlier Wuhan strain. Furthermore, by characterizing chimeric viruses with the Omicron gene in the Wuhan strain genetic background and vice versa, we found that viral genes downstream of ORF3a, but not the S gene, were responsible for the limited spread of the Omicron strain in the lower airways of the virus-infected hamsters. Moreover, molecular evolutionary analysis of SARS-CoV-2 revealed a positive selection of genes downstream of ORF3a (M and E genes). Our findings provide insight into the adaptive evolution of the virus in humans during the pandemic convergence phase.IMPORTANCEThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread worldwide since its emergence in late 2021, and its sub-lineages are established in human society. Compared to previous strains, the Omicron strain is less invasive in the lower respiratory tract, including the lungs, and causes less severe disease; however, the mechanistic basis for its restricted replication in the lower airways is poorly understood. In this study, using a newly established low-volume inoculation system that reflects natural human infection, we demonstrated that the Omicron strain spreads less efficiently into the lungs of hamsters compared with an earlier Wuhan strain and found that viral genes downstream of ORF3a are responsible for replication restriction in the lower respiratory tract of Omicron-infected hamsters. Furthermore, we detected a positive selection of genes downstream of ORF3a (especially the M and E genes) in SARS-CoV-2, suggesting that these genes may undergo adaptive changes in humans.


Assuntos
COVID-19 , Evolução Molecular , SARS-CoV-2 , Animais , Cricetinae , COVID-19/virologia , Pulmão/virologia , Mesocricetus , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA