Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(4): 2646-2653, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232312

RESUMO

Ammonia reforming of light alkane is conventionally employed for HCN production where coproduct H2 is burned for heating owing to the high reaction temperature (1200 °C) of such a highly endothermic process. Here, we show that a Ni3Ga1 intermetallic compound (IMC) catalyst is highly efficient for such a reaction, realizing efficient conversion of C1-C3 alkanes at 575-750 °C. This makes it feasible for on-purpose COx-free H2 production assuming that ammonia, as an H2 carrier, is ubiquitously available from renewable energy. At 650 °C and an alkane/ammonia ratio of 1/2, ethane and propane conversion of ∼20% and methane conversion of 13% were obtained (with nearly 100% HCN selectivity for methane and ethane) over the unsupported Ni3Ga1 IMC, which also shows high stability due to the absence of coke deposition. This breakthrough is achieved by employing a stoichiometric Ni3Ga1 mixed oxalate solid solution as the precursor for the Ni3Ga1 IMC.

2.
Plant Dis ; 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33074068

RESUMO

Radix pseudostellariae L. is one of the most common and highly-prized Chinese medicinal plants with various pharmacological effects, and mainly produced in acid soils in the Guizhou and Fujian provinces of southwestern and southeastern China, respectively (Wu et al. 2020). However, consecutive monoculture of R. pseudostellariae results in severe root rot and decline in biomass and quality of underground tubers. Root tubers of R. pseudostellariae are typically planted in December and harvested in next June. Root rot commonly starts developing in May. The disease incidence of root rot was ranging from 37 to 46% in root portions and basal stem of R. pseudostellariae under the consecutive monoculture fields in Shibing County, Guizhou Province, China (108°12'E, 27°03'N) (Li et al. 2017). Severe root rot was observed in Shibing County in May 2018. Infected plants displayed curly, withered, and yellow leaves, blight, retarded growth, root rot, and yield losses. Abundant whitish mycelia were observed on roots and surrounding soil. Two fungal isolates, designated GZ20190123 and GZ20190124, were obtained from symptomatic roots cultured on potato dextrose agar (PDA). The optimum temperature range for growth of the two isolates was 25 to 30°C. The optimum pH range for the growth of GZ20190123 was 5 to 5.5, whereas GZ20190124 grew better between pH 5 to 8.5. The mean mycelial growth rates of GZ20190123 and GZ20190124 at 30°C were 2.1 and 1.5 cm/day, respectively. Conidia of the two isolates were ovoid or obclavate and were produced in single or branched chains. The internal transcribed spacer (ITS) region was amplified with primers ITS1 and ITS4 (White et al. 1990). The sequences were deposited in GenBank as accession No. MN726736 for GZ20190123 and MN726738 for GZ20190124. Sequence comparison revealed 99% (GZ20190123) and 97% (GZ20190124) identity with previously reported isolate xsd08071 of Mucor racemosus Bull. (accession No. FJ582639.1) and isolate BM3 of Mucor fragilis Bainier (accession No. MK910058.1), respectively, which was confirmed by phylogenetic analysis. The two isolates were tested for pathogenicity on R. pseudostellariae. Six roots of R. pseudostellariae were surface-sterilized with 75% ethanol and stab inoculated with mycelia using a sterile toothpick for each isolate. Sterile distilled water was stab inoculated to twelve roots to serve as the control. Treated roots were incubated in a greenhouse with 16 h day length [light intensity 146.5 µmol/(m2·s)] and day/night temperature 26°C/18°C. The inoculated roots showed the expected symptoms on roots and sprouts 7 days after inoculation, whereas the control roots with sprouts did not show any symptom. The fungi were re-isolated from the diseased roots and confirmed as expected M. racemosus or M. fragilis based on the ITS sequences, which satisfied Koch's postulates. Thus, isolate GZ20190123 was identified as M. racemosus and GZ20190124 as M. fragilis. Previously, M. racemosus and M. fragilis have been reported as a pathogen on tomato (Kwon and Hong 2005) and grape (Ghuffar et al. 2018), respectively. To our knowledge, this is the first report of M. racemosus and M. fragilis causing root rot of R. pseudostellariae in southwestern China, where the disease could cause a significant loss to production of this important medicinal plant.

3.
Chemosphere ; 246: 125835, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31927385

RESUMO

Biochar amendment has been extensively used to improve plant performance and suppress disease in monoculture systems; however, few studies have focused on the underlying control mechanisms of replanting disease. In this study, we assessed the effects of biochar application on Radix pseudostellariae plant growth, rhizosphere soil microbial communities, and the physiological properties of microorganisms in a consecutive monoculture system. We found that biochar addition had little impact on the physiological parameters of tissue cultures of R. pseudostellaria but did significantly mediate microbial abundance in the rhizosphere soil of different consecutive monoculture years, leading to decreases in the abundance of pathogenic Fusarium oxysporum, Talaromyces helicus, and Kosakonia sacchari. Furthermore, biochar amendment had negative effects on the growth of beneficial bacteria, such as Burkholderia ambifaria, Pseudomonas chlororaphis, and Bacillus pumilus. Metabolomic analysis indicated that biochar significantly influenced the metabolic processes of F. oxysporum while inhibiting the mycelial growth and abating the virulence on plants. In summary, this study details the potential mechanisms responsible for the biochar-stimulated changes in the abundances and metabolism of rhizosphere bacteria and fungi, decreases in the contents of pathogens, and therefore improvements in the environmental conditions for plants growth. Further research is needed to evaluate the effects of biochar in long-term field trials.


Assuntos
Agricultura , Carvão Vegetal/química , Microbiota , Rizosfera , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Estudos Longitudinais , Desenvolvimento Vegetal , Raízes de Plantas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...