Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(25): e2401338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506613

RESUMO

The discovery of intrinsic 2D magnetic materials has opened up new opportunities for exploring magnetic properties at atomic layer thicknesses, presenting potential applications in spintronic devices. Here a new 2D ferrimagnetic crystal of nonlayered FeCr2S4 is synthesized with high phase purity using chemical vapor deposition. The obtained 2D FeCr2S4 exhibits perpendicular magnetic anisotropy, as evidenced by the out-of-plane/in-plane Hall effect and anisotropic magnetoresistance. Theoretical calculations further elucidate that the observed magnetic anisotropy can be attributed to its surface termination structure. By combining temperature-dependent magneto-transport and polarized Raman spectroscopy characterizations, it is discovered that both the measured Curie temperature and the critical temperature at which a low energy magnon peak disappeared remains constant, regardless of its thickness. Magnetic force microscopy measurements show the flipping process of magnetic domains. The exceptional air-stability of the 2D FeCr2S4 is also confirmed via Raman spectroscopy and Hall hysteresis loops. The robust anisotropic ferrimagnetism, the thickness-independent of Curie temperature, coupled with excellent air-stability, make 2D FeCr2S4 crystals highly attractive for future spintronic devices.

2.
ACS Nano ; 17(6): 6095-6102, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36912657

RESUMO

In-memory computing is a highly efficient approach for breaking the bottleneck of von Neumann architectures, i.e., reducing redundant latency and energy consumption during the data transfer between the physically separated memory and processing units. Herein we have designed a in-memory computing device, a van der Waals ferroelectric semiconductor (InSe) based metal-oxide-ferroelectric semiconductor field-effect transistor (MOfeS-FET). This MOfeS-FET integrates memory and logic functions in the same material, in which the out-of-plane (OOP) ferroelectric polarization in InSe is used for data storage and the semiconducting property is used for the logic computation. The MOfeS-FET shows a long retention time with high on/off ratios (>106), high program/erase (P/E) ratios (103), and stable cyclic endurance. Moreover, inverter, programmable NAND, and NOR Boolean logic operations with nonvolatile storage of the results have all been demonstrated using our approach. These findings highlight the potential of van der Waals ferroelectric semiconductor-based MOfeS-FETs in the in-memory computing and their potential of achieving size scaling beyond Moore's law.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159716

RESUMO

Constructing 2D heterojunctions with high performance is the critical solution for the optoelectronic applications of 2D materials. This work reports on the studies on the preparation of high-quality van der Waals SiAs single crystals and high-performance photodetectors based on the 2D SiAs/SnS2 heterojunction. The crystals are grown using the chemical vapor transport (CVT) method and then the bulk crystals are exfoliated to a few layers. Raman spectroscopic characterization shows that the low wavenumber peaks from interlayer vibrations shift significantly along with SiAs' thickness. In addition, when van der Waals heterojunctions of p-type SiAs/n-type SnS2 are fabricated, under the source-drain voltage of -1 V-1 V, they exhibit prominent rectification characteristics, and the ratio of forwarding conduction current to reverse shutdown current is close to 102, showing a muted response of 1 A/W under excitation light of 550 nm. The light responsivity and external quantum efficiency are increased by 100 times those of SiAs photodetectors. Our experimental results enrich the research on the IVA-VA group p-type layered semiconductors.

4.
Nanotechnology ; 33(12)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34874305

RESUMO

As scaling down the size of metal oxide semiconductor field-effect transistors (FETs), power dissipation has become a major challenge. Lowering down the sub-threshold swing (SS) is known as an effective technique to decrease the operating voltage of FETs and hence lower down the power consumption. However, the Boltzmann distribution of electrons (so-called 'Boltzmann tyranny') implements a physical limit to the SS value. Use of negative capacitance (NC) effect has enabled a new path to achieve a low SS below the Boltzmann limit (60 mV dec-1at room temperature). In this work, we have demonstrated a NC-FET from an all two-dimensional (2D) metal ferroelectric semiconductor (MFS) vertical heterostructure: Graphene/CuInP2S6/MoS2. The negative capacitance from the ferroelectric CuInP2S6has enabled the breaking of the 'Boltzmann tyranny'. The heterostructure based device has shown steep slopes switching below 60 mV dec-1(lowest to < 10 mV dec-1) over 3 orders of source-drain current, which provides an avenue for all 2D material based steep slope FETs.

5.
RSC Adv ; 11(5): 2624-2629, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424251

RESUMO

Recently, ultrathin two-dimensional (2D) metallic vanadium dichalcogenides have attracted widespread attention because of the charge density wave (CDW) phase transition and possible ferromagnetism. Herein, we report the synthesis and temperature-dependent Raman characterization of the 2D vanadium ditelluride (VTe2). The synthesis is done by atmospheric pressure chemical vapor deposition (APCVD) using vanadium chloride (VCl3) precursor on fluorphlogopite mica, sapphire, and h-BN substrates. A large area of the thin film with thickness ∼10 nm is grown on the hexagonal boron nitride (h-BN) substrate. Temperature-dependent Raman characterization of VTe2 is conducted from room temperature to 513 K. Remarkable changes of Raman modes at around 413 K are observed, indicating the structural phase transition.

6.
ACS Nano ; 14(8): 10544-10551, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806048

RESUMO

The recent discovery of van der Waals magnetic materials has attracted great attention in materials science and spintronics. The preparation of ultrathin magnetic layers down to atomic thickness is challenging and is mostly by mechanical exfoliation. Here, we report vapor deposition of magnetic van der Waals NiI2 crystals. Two-dimensional (2D) NiI2 flakes are grown on SiO2/Si substrates with a thickness of 5-40 nm and on hexagonal boron nitride (h-BN) down to monolayer thickness. Temperature-dependent Raman spectroscopy reveals robust magnetic phase transitions in the as-grown 2D NiI2 crystals down to trilayer. Electrical measurements show a semiconducting transport behavior with a high on/off ratio of 106 for the NiI2 flakes. Lastly, density functional theory calculation shows an intralayer ferromagnetic and interlayer antiferromagnetic ordering in 2D NiI2. This work provides a feasible approach to epitaxy 2D magnetic transition metal halides and also offers atomically thin materials for spintronic devices.

8.
Adv Mater ; 31(45): e1804682, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30393917

RESUMO

Layered materials with phase transitions, such as charge density wave (CDW) and magnetic and dipole ordering, have potential to be exfoliated into monolayers and few-layers and then become a large and important subfamily of two-dimensional (2D) materials. Benefitting from enriched physical properties from the collective interactions, long-range ordering, and related phase transitions, as well as the atomic thickness yet having nondangling bonds on the surface, 2D phase-transition materials have vast potential for use in new-concept and functional devices. Here, potential 2D phase-transition materials with CDWs and magnetic and dipole ordering, including transition metal dichalcogenides, transition metal halides, metal thio/selenophosphates, chromium silicon/germanium tellurides, and more, are introduced. The structures and experimental phase-transition properties are summarized for the bulk materials and some of the obtained monolayers. In addition, recent experimental progress on the synthesis and measurement of monolayers, such as 1T-TaS2 , CrI3 , and Cr2 Ge2 Te6 , is reviewed.

9.
Nat Mater ; 17(12): 1108-1114, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30323336

RESUMO

Two-dimensional (2D) MoS2, which has great potential for optoelectronic and other applications, is thermodynamically stable and hence easily synthesized in its semiconducting 2H phase. In contrast, growth of its metastable 1T and 1T' phases is hampered by their higher formation energy. Here we use theoretical calculations to design a potassium (K)-assisted chemical vapour deposition method for the phase-selective growth of 1T' MoS2 monolayers and 1T'/2H heterophase bilayers. This is realized by tuning the concentration of K in the growth products to invert the stability of the 1T' and 2H phases. The synthesis of 1T' MoS2 monolayers with high phase purity allows us to characterize their intrinsic optical and electrical properties, revealing a characteristic in-plane anisotropy. This phase-controlled bottom-up synthesis offers a simple and efficient way of manipulating the relevant device structures, and provides a general approach for producing other metastable-phase 2D materials with unique properties.

10.
Adv Mater ; 30(38): e1800074, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30069932

RESUMO

Ultrathin two-dimensional (2D) charge density wave (CDW) materials, with sharp resistance change at the phase-transition temperature, yet with ultrathin thickness, hold great potential for electrical device applications. However, chemical synthesis of high-quality samples and observation of the CDW states down to the monolayer limit is still of great challenge. Chemical vapor deposition of 1T-TaS2 sheets on hexagonal boron nitride (h-BN) with robust CDW states even down to the monolayer extreme is reported here. Further, based on the near commensurate CDW to incommensurate CDW phase transition with a high temperature coefficient of resistance (TCR), highly responsive room-temperature bolometers are fabricated by suspending the as-grown 1T-TaS2 sheets.

11.
J Biomed Nanotechnol ; 14(8): 1496-1504, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29903064

RESUMO

Correct classification diagnosis of diabetes is critical for timely and appropriate treatment, which partially depends on the multiple islet autoantibodies measurement and combined analysis. This study reports plasmon-enhanced fluorescence protein microchip method, a fast, high-throughput, and high sensitive method, to measure circulating islet autoantibodies. This method can achieve islet autoantibodies combined analysis within a few hours by using a few microliters of serum. Combined islet autoantibodies analysis improved discriminatory ability, especially the diagnostic sensitivity. Furthermore, by applying this method, we found 4 out of 6 diabetes atypical patients who were clinically highly suspected of having autoimmune diabetes but had a negative result of glutamic acid decarboxylase antibody and insulinoma-associated protein 2 antibody by enzyme-linked immunosorbent assay were positive at least 1 out of 4 islet autoantibodies, largely reducing the rate of missed diagnosis of autoimmune diabetes and further validating its clinical value. This study shows the great clinical potentials of plasmon-enhanced fluorescence protein microchips.


Assuntos
Diabetes Mellitus Tipo 1 , Análise Serial de Proteínas , Autoanticorpos , Glutamato Descarboxilase , Humanos , Ilhotas Pancreáticas
12.
Small ; 14(22): e1800725, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29717818

RESUMO

Corrugation is a ubiquitous phenomenon for graphene grown on metal substrates by chemical vapor deposition, which greatly affects the electrical, mechanical, and chemical properties. Recent years have witnessed great progress in controlled growth of large graphene single crystals; however, the issue of surface roughness is far from being addressed. Here, the corrugation at the interface of copper (Cu) and graphene, including Cu step bunches (CuSB) and graphene wrinkles, are investigated and ascribed to the anisotropic strain relaxation. It is found that the corrugation is strongly dependent on Cu crystallographic orientations, specifically, the packed density and anisotropic atomic configuration. Dense Cu step bunches are prone to form on loose packed faces due to the instability of surface dynamics. On an anisotropic Cu crystal surface, Cu step bunches and graphene wrinkles are formed in two perpendicular directions to release the anisotropic interfacial stress, as revealed by morphology imaging and vibrational analysis. Cu(111) is a suitable crystal face for growth of ultraflat graphene with roughness as low as 0.20 nm. It is believed the findings will contribute to clarifying the interplay between graphene and Cu crystal faces, and reducing surface roughness of graphene by engineering the crystallographic orientation of Cu substrates.

13.
ACS Nano ; 11(12): 12337-12345, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29191004

RESUMO

Wrinkles are ubiquitous for graphene films grown on various substrates by chemical vapor deposition at high temperature due to the strain induced by thermal mismatch between the graphene and substrates, which greatly degrades the extraordinary properties of graphene. Here we show that the wrinkle formation of graphene grown on Cu substrates is strongly dependent on the crystallographic orientations. Wrinkle-free single-crystal graphene was grown on a wafer-scale twin-boundary-free single-crystal Cu(111) thin film fabricated on sapphire substrate through strain engineering. The wrinkle-free feature of graphene originated from the relatively small thermal expansion of the Cu(111) thin film substrate and the relatively strong interfacial coupling between Cu(111) and graphene, based on the strain analyses as well as molecular dynamics simulations. Moreover, we demonstrated the transfer of an ultraflat graphene film onto target substrates from the reusable single-crystal Cu(111)/sapphire growth substrate. The wrinkle-free graphene shows enhanced electrical mobility compared to graphene with wrinkles.

14.
ACS Nano ; 11(10): 10366-10372, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28992402

RESUMO

The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS2) and show a large circular intensity differential (CID) of Raman scattering in ReS2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.

15.
Small ; 13(30)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28599097

RESUMO

Identification of the crystalline axis of anisotropic black phosphorus (BP) is important for investigating its physical properties, as well as for optical and electronic applications. Herein, it is showed that by applying in-plane uniaxial strain and measuring the changes of the Raman shifts, the crystalline axis of BP can be reliably determined. The strain effects on the Raman shifts are angle-dependent, and they can be expressed as a combination of the Raman responses under zigzag and armchair strain. Differing from previous polarized optical spectroscopic methods where the Raman intensity is analyzed, the proposed method uses the Raman frequency shift, which is less affected by laser polarization, excitation wavelength, the sample thickness, and the substrate. The effective strain applied on BP from the stretched substrate is estimated, and the results show that only 20 to 40% of the strain can be effectively transferred to BP flakes from a polyethylene terephthalate substrate. Our method provides not only an effective and robust approach to identify the crystalline orientation of layered BP, but it is also a model to extract additional information in strain-related studies. It can also be extended to other 2D anisotropic materials.

16.
Nanoscale ; 8(45): 18956-18962, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27805226

RESUMO

As an anisotropic 2D layered material, rhenium disulfide (ReS2) has attracted much attention because of its unusual properties and promising applications in electronic and optoelectronic devices. However, the low lattice symmetry and interlayer decoupling of ReS2 make asymmetric growth and out-of-plane growth occur quite easily; therefore, thick flake, dendritic and flower-like structures of ReS2 have mostly been obtained previously. Here, we report on an approach based on space-confined epitaxial growth for the controlled synthesis of ReS2 films. Using this approach, large-area and high-quality ReS2 films with uniform monolayer thickness can grow on a mica substrate. Furthermore, the weak van der Waals interaction between the surface of mica and ReS2 clusters, which favors surface-confined growth while avoiding out-of-plane growth, is critical for growing ReS2 with uniform monolayer thickness. The morphological evolution of ReS2 with the growth temperature reveals that asymmetric growth can be suppressed at relatively low temperatures. A ReS2 field-effect transistor displayed a current on/off ratio of 106 and an electron mobility of up to 40 cm2 V-1 s-1, with outstanding photoresponsivity of 12 A W-1. This work not only promotes the large-scale employment of ReS2 in high-performance optoelectronic devices, but also provides a means of controlling the unusual growth behavior of low-lattice-symmetry 2D layered materials.

17.
Small ; 12(19): 2627-33, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27030911

RESUMO

The incident and scattered light engaged in the Raman scattering process of low symmetry crystals always suffer from the birefringence-induced depolarization. Therefore, for anisotropic crystals, the classical Raman selection rules should be corrected by taking the birefringence effect into consideration. The appearance of the 2D anisotropic materials provides an excellent platform to explore the birefringence-directed Raman selection rules, due to its controllable thickness at the nanoscale that greatly simplifies the situation comparing with bulk materials. Herein, a theoretical and experimental investigation on the birefringence-directed Raman selection rules in the anisotropic black phosphorus (BP) crystals is presented. The abnormal angle-dependent polarized Raman scattering of the Ag modes in thin BP crystal, which deviates from the normal Raman selection rules, is successfully interpreted by the theoretical model based on birefringence. It is further confirmed by the examination of different Raman modes using different laser lines and BP samples of different thicknesses.

18.
J Am Chem Soc ; 138(1): 300-5, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26669826

RESUMO

The striking in-plane anisotropy remains one of the most intriguing properties for the newly rediscovered black phosphorus (BP) 2D crystals. However, because of its rather low-energy band gap, the optical anisotropy of few-layer BP has been primarily investigated in the near-infrared (NIR) regime. Moreover, the essential physics that determine the intrinsic anisotropic optical property of few-layer BP, which is of great importance for practical applications in optical and optoelectronic devices, are still in the fancy of theory. Herein, we report the direct observation of the optical anisotropy of few-layer BP in the visible regime simply by using polarized optical microscopy. On the basis of the Fresnel equation, the intrinsic anisotropic complex refractive indices (n-iκ) in the visible regime (480-650 nm) were experimentally obtained for the first time using the anisotropic optical contrast spectra. Our findings not only provide a convenient approach to measure the optical constants of 2D layered materials but also suggest a possibility to design novel BP-based photonic devices such as atom-thick light modulators, including linear polarizer, phase plate, and optical compensator in a broad spectral range extending to the visible window.

19.
ACS Nano ; 9(7): 7450-5, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26061011

RESUMO

Transition-metal dichalcogenide (TMD) monolayer alloys are a branch of two-dimensional (2D) materials which can have large-range band gap tuning as the composition changes. Synthesis of 2D TMD monolayer alloys with controlled composition as well as controlled domain size and edge structure is of great challenge. In the present work, we report growth of MoS2(1-x)Se2x monolayer alloys (x = 0.41-1.00) with controlled morphology and large domain size using physical vapor deposition (PVD). MoS2(1-x)Se2x monolayer alloys with different edge orientations (Mo-zigzag and S/Se-zigzag edge orientations) have been obtained by controlling the deposition temperature. Large domain size of MoS2(1-x)Se2x monolayer alloys (x = 0.41-1.00) up to 20 µm have been obtained by tuning the temperature gradient in the deposition zone. Together with previously obtained MoS2(1-x)Se2x monolayer alloys (x = 0-0.40), the band gap photoluminescence (PL) is continuously tuned from 1.86 eV (i.e., 665 nm, reached at x = 0.00) to 1.55 eV (i.e., 800 nm, reached at x = 1.00). Additionally, Raman peak splitting was observed in MoS2(1-x)Se2x monolayer alloys. This work provides a way to synthesize MoS2(1-x)Se2x monolayer alloys with different edge orientations, which could be benefit to controlled growth of other 2D materials.

20.
Angew Chem Int Ed Engl ; 54(8): 2366-9, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25611334

RESUMO

An optical anisotropic nature of black phosphorus (BP) is revealed by angle-resolved polarized Raman spectroscopy (ARPRS), and for the first time, an all-optical method was realized to identify the crystal orientation of BP sheets, that is, the zigzag and armchair directions. We found that Raman intensities of Ag(1), B2g, and Ag(2) modes of BP not only depend on the polarization angle α, but also relate to the sample rotation angle θ. Furthermore, their intensities reach the local maximum or minimum values when the crystalline orientation is along with the polarization direction of scattered light (es). Combining with the angle-resolved conductance, it is confirmed that Ag(2) mode intensity achieves a relative larger (or smaller) local maximum under parallel polarization configuration when armchair (or zigzag) direction is parallel to es. Therefore, ARPRS can be used as a rapid, precise, and nondestructive method to identify the crystalline orientation of BP layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA