Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1377793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855463

RESUMO

The mutualistic plant rhizobacteria which improve plant development and productivity are known as plant growth-promoting rhizobacteria (PGPR). It is more significant due to their ability to help the plants in different ways. The main physiological responses, such as malondialdehyde, membrane stability index, relative leaf water content, photosynthetic leaf gas exchange, chlorophyll fluorescence efficiency of photosystem-II, and photosynthetic pigments are observed in plants during unfavorable environmental conditions. Plant rhizobacteria are one of the more crucial chemical messengers that mediate plant development in response to stressed conditions. The interaction of plant rhizobacteria with essential plant nutrition can enhance the agricultural sustainability of various plant genotypes or cultivars. Rhizobacterial inoculated plants induce biochemical variations resulting in increased stress resistance efficiency, defined as induced systemic resistance. Omic strategies revealed plant rhizobacteria inoculation caused the upregulation of stress-responsive genes-numerous recent approaches have been developed to protect plants from unfavorable environmental threats. The plant microbes and compounds they secrete constitute valuable biostimulants and play significant roles in regulating plant stress mechanisms. The present review summarized the recent developments in the functional characteristics and action mechanisms of plant rhizobacteria in sustaining the development and production of plants under unfavorable environmental conditions, with special attention on plant rhizobacteria-mediated physiological and molecular responses associated with stress-induced responses.

2.
Front Plant Sci ; 13: 992755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36352884

RESUMO

Drought is the abiotic factor that adversely affects plant growth, development survival, and crop productivity, posing a substantial threat to sustainable agriculture worldwide, especially in warm and dry areas. However, the extent of damage depends upon the crop growth stage, severity and frequency of the stress. In general, the reproductive growth phase is more sensitive to stresses causing a substantial loss in crop productivity. Saccharum spontaneum (L.) is the most variable wild relative of sugarcane with potential for use in sugarcane crop improvement programs. In the present study addresses the transcriptomic analysis of drought stress imposed by polyethylene glycol-6000 (PED-6000; w/v- 25%) on the root tip tissues of S. spontaneum GX83-10. The analysis of microarrays of drought-stressed roots was performed at 0 (CK), 2 (T2), 4 (T4), 8 (T8) and 24 h (T24). The analyzed data were compared with the gene function annotations of four major databases, such as Nr, KOG/COG, Swiss-Prot, and KEGG, and a total of 62,988 single-gene information was obtained. The differently expressed genes of 56237 (T4), 59319 (T8), and 58583 (T24), among which CK obtained the most significant number of expressed genes (35920) as compared to T24, with a total of 53683 trend genes. Gene ontology (GO) and KEGG analysis were performed on the 6 important trends, and a total of 598 significant GO IDs and 42 significantly enriched metabolic pathways. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with enhanced stress resistance efficiency for sustainable agriculture.

3.
Front Plant Sci ; 13: 852886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371161

RESUMO

Sugarcane is a cash crop that plays an integral part in the sugar industry. The Sustainable Sugarcane Initiative (SSI) has been adopted globally, ensuring enough and aiming for more yield, helping increase disease-free sugarcane cultivation. Single-bud seeds could be the best approach for sugarcane cultivation. Indole-3-butyric acid (IBA) is a rooting agent utilized significantly in seedling propagation. Greenhouse experiment results discovered the significant growth promotion in sugarcane seedlings and accumulation of plant hormones at 100 ppm IBA. Next, we performed transcriptomic analysis of sugarcane buds using RNA sequencing and compared their gene expression during root development due to affect of IBA (100 ppm). A total of 113,475 unigenes were annotated with an average length of 836 bp (N50 = 1,536). The comparative RNA-seq study between the control (CK) and IBA-treated (T) buds showed significant differentially expressed unigenes (494 upregulated and 2086 downregulated). The IBA influenced major biological processes including metabolic process, the cellular process, and single-organism process. For cellular component category, cell, cell part, organelle, membrane, and organelle part were mainly affected. In addition, catalytic activity and binding were primarily affected in the molecular function categories. Furthermore, the expression of genes related to plant hormones and signaling pathways was analyzed by qRT-PCR, which was consistent with the RNA-seq expression profile. This study provides new insights into the IBA response to the bud sprouting in sugarcane based on RNA sequencing, and generated information could help further research on breeding improvement of sugarcane.

4.
Front Plant Sci ; 13: 1025974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618645

RESUMO

Abiotic stresses causing extensive yield loss in various crops globally. Over the past few decades, the application of silicon nanoparticles (nSi) has emerged as one of the abiotic stress mitigators. The initial responses of plants are shown by the biogenesis of reactive oxygen species (ROS) to sustain cellular/organellar integrity to ensure in vivo operation of metabolic functions by regulating physiological and biochemical pathways during stress conditions. Plants have evolved various antioxidative systems to balance/maintain the process of homeostasis via enzymatic and non-enzymatic activities to repair the losses. In the adverse environment, supplementation of Si mitigates the stress condition and improved the growth and development of plants. Its ameliorative effects were correlated with the enhanced antioxidant enzymes activities to maintain the equilibrium between the ROS generation and reduction. However, there are limited studies covered the role of nSi in the abiotic stress condition. This review addresses the accumulation and/or uptake of nSi in several crops and its mode of action linked with improved plants' growth and tolerance capabilities to confer sustainable agriculture.

5.
Biol Res ; 54(1): 15, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933166

RESUMO

BACKGROUND: Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses. METHODS: In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange. RESULTS: In the present study we primarily revealed the consequences of low soil moisture content, which affect overall plant performance of sugarcane significantly. Silicon application reduced the adverse effects of water stress by improving the net photosynthetic assimilation rate (Anet) 1.35-18.75%, stomatal conductance to water vapour (gs) 3.26-21.57% and rate of transpiration (E) 1.16-17.83%. The mathematical models developed from the proposed hypothesis explained the functional relationships between photosynthetic responses of Si application and water stress mitigation. CONCLUSIONS: Silicon application showed high ameliorative effects on photosynthetic responses of sugarcane to water stress and could be used for mitigating environmental stresses in other crops, too, in future.


Assuntos
Saccharum , Silício , Desidratação , Fotossíntese , Folhas de Planta , Água
6.
Biol. Res ; 54: 15-15, 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505808

RESUMO

BACKGROUND: Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses. METHODS: In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange. RESULTS: In the present study we primarily revealed the consequences of low soil moisture content, which affect overall plant performance of sugarcane significantly. Silicon application reduced the adverse effects of water stress by improving the net photosynthetic assimilation rate (Anet) 1.35-18.75%, stomatal conductance to water vapour (gs) 3.26-21.57% and rate of transpiration (E) 1.16-17.83%. The mathematical models developed from the proposed hypothesis explained the functional relationships between photosynthetic responses of Si application and water stress mitigation. CONCLUSIONS: Silicon application showed high ameliorative effects on photosynthetic responses of sugarcane to water stress and could be used for mitigating environmental stresses in other crops, too, in future.


Assuntos
Silício , Saccharum , Fotossíntese , Água , Folhas de Planta , Desidratação
7.
PeerJ ; 8: e10154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194396

RESUMO

In the dynamic era of climate change, agricultural farming systems are facing various unprecedented problems worldwide. Drought stress is one of the serious abiotic stresses that hinder the growth potential and crop productivity. Silicon (Si) can improve crop yield by enhancing the efficiency of inputs and reducing relevant losses. As a quasi-essential element and the 2nd most abundant element in the Earth's crust, Si is utilized by plants and applied exogenously to combat drought stress and improve plant performance by increasing physiological, cellular and molecular responses. However, the physiological mechanisms that respond to water stress are still not well defined in Saccharum officinarum plants. To the best of our knowledge, the dynamics of photosynthesis responsive to different exogenous Si levels in Saccharum officinarum has not been reported to date. The current experiment was carried out to assess the protective role of Si in plant growth and photosynthetic responses in Saccharum officinarum under water stress conditions. Saccharum officinarum cv. 'GT 42' plants were subjected to drought stress conditions (80-75%, 55-50% and 35-30% of soil moisture) after ten weeks of normal growth, followed by the soil irrigation of Si (0, 100, 300 and 500 mg L-1) for 8 weeks. The results indicated that Si addition mitigated the inhibition in Saccharum officinarum growth and photosynthesis, and improved biomass accumulation during water stress. The photosynthetic responses (photosynthesis, transpiration and stomatal conductance) were found down-regulated under water stress, and it was significantly enhanced by Si application. No phytotoxic effects were monitored even at excess (500 mg L-1). Soil irrigation of 300 mg L-1 of Si was more effective as 100 and 500 mg L-1 under water stress condition. It is concluded that the stress in Saccharum officinarum plants applied with Si was alleviated by improving plant fitness, photosynthetic capacity and biomass accumulation as compared with the control. Thus, this study offers new information towards the assessment of growth, biomass accumulation and physiological changes related to water stress with Si application in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA