Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(24): 21473-21480, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31135127

RESUMO

The inherent instability of UV-induced degradation in TiO2-based perovskite solar cells was largely improved by replacing the anatase-phase compact TiO2 layer with an atomic sheet transport layer (ASTL) of two-dimensional (2D) Ti1-δO2. The vital role of microscopic carrier dynamics that govern the UV stability of perovskite solar cells was comprehensively examined in this work by performing time-resolved pump-probe spectroscopy. In conventional perovskite solar cells, the presence of a UV-active oxygen vacancy in compact TiO2 prohibits current generation by heavily trapping electrons after UV degradation. Conversely, the dominant vacancy type in the 2D Ti1-δO2 ASTL is a titanium vacancy, which is a shallow acceptor and is not UV-sensitive. Therefore, it significantly suppresses carrier recombination and extends UV stability in perovskite solar cells with a 2D Ti1-δO2 ASTL. Other carrier dynamics, such as electron diffusion, electron injection, and hot hole transfer processes, were found to be less affected by UV irradiation. Quantitative pump-probe data clearly show a correlation between the carrier dynamics and UV aging of perovskite solar cells, thus providing a profound insight into the factors driving UV-induced degradation in perovskite solar cells and the origin of its performance.

2.
RSC Adv ; 8(23): 12526-12534, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35541234

RESUMO

In photovoltaic devices, more effective transfer of dissociated electrons and holes from the active layer to the respective electrodes will result in higher fill factors and short-circuit current densities and, thus, enhanced power conversion efficiencies (PCEs). Planar perovskite photovoltaics feature an active layer that can provide a large exciton diffusion length, reaching several micrometers, but require efficient carrier transport layers for charge extraction. In this study, we employed two nanocomposite carrier transfer layers-an electron transport layer (ETL) comprising [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) doped with the small molecule 4,7-diphenyl-1,10-phenanthroline (Bphen), to enhance the electron mobility, and a hole transfer layer (HTL) comprising poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) doped with molybdenum disulfide (MoS2) nanosheets, to enhance the hole mobility. We used ultraviolet photoelectron spectroscopy to determine the energy levels of these composite ETLs and HTLs; atomic force microscopy and scanning electron microscopy to probe their surface structures; and transmission electron microscopy and synchrotron grazing-incidence small-angle X-ray scattering to decipher the structures of the ETLs. Adding a small amount (less than 1%) of Bphen allowed us to tune the energy levels of the ETL and decrease the size of the PC61BM clusters and, therefore, generate more PC61BM aggregation domains to provide more pathways for electron transport, leading to enhanced PCEs of the resulting perovskite devices. We used quantitative pump-probe data to resolve the carrier dynamics from the perovskite to the ETL and HTL, and observed a smaller possibility of carrier recombination and a shorter injection lifetime in the perovskite solar cell doubly modified with carrier transport layers, resulting in an enhancement of the PCE. The PCE reached 16% for a planar inverted perovskite device featuring an ETL incorporating 0.5 wt% Bphen within PC61BM and 0.1 wt% MoS2 within PEDOT:PSS; this PCE is more than 50% higher than the value of 10.2% for the corresponding control device.

3.
Nanomaterials (Basel) ; 7(4)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383488

RESUMO

Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new "paradigm shift" non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

4.
ACS Appl Mater Interfaces ; 9(16): 14006-14012, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28281352

RESUMO

Ink-printing method emerges as a viable way for manufacturing large-scale flexible Cu(In,Ga)Se2 (CIGS) thin film photovoltaic (TFPV) devices owing to its potential for the rapid process, mass production, and low-cost nonvacuum device fabrication. Here, we brought the femtosecond laser annealing (fs-LA) process into the ink-printing CIGS thin film preparation. The effects of fs-LA treatment on the structural and optoelectronic properties of the ink-printing CIGS thin films were systematically investigated. It was observed that, while the film surface morphology remained essentially unchanged under superheating, the quality of crystallinity was significantly enhanced after the fs-LA treatment. Moreover, a better stoichiometric composition was achieved with an optimized laser scanning rate of the laser beam, presumably due to the much reduced indium segregation phenomena, which is believed to be beneficial in decreasing the defect states of InSe, VSe, and InCu. Consequently, the shunt leakage current and recombination centers were both greatly decreased, resulting in a near 20% enhancement in photovoltaic conversion efficiency.

5.
Nanoscale Res Lett ; 12(1): 208, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330186

RESUMO

In this work, aiming at developing a rapid and environmental-friendly process for fabricating CuIn1-x Ga x Se2 (CIGS) solar cells, we demonstrated the one-step selenization process by using selenium vapor as the atmospheric gas instead of the commonly used H2Se gas. The photoluminescence (PL) characteristics indicate that there exists an optimal location with superior crystalline quality in the CIGS thin films obtained by one-step selenization. The energy dispersive spectroscopy (EDS) reveals that the Ga lateral distribution in the one-step selenized CIGS thin film is intimately correlated to the blue-shifted PL spectra. The surface morphologies examined by scanning electron microscope (SEM) further suggested that voids and binary phase commonly existing in CIGS films could be successfully eliminated by the present one-step selenization process. The agglomeration phenomenon attributable to the formation of MoSe2 layer was also observed. Due to the significant microstructural improvement, the current-voltage (J-V) characteristics and external quantum efficiency (EQE) of the devices made of the present CIGS films have exhibited the remarkable carrier transportation characteristics and photon utilization at the optimal location, resulting in a high conversion efficiency of 11.28%. Correlations between the defect states and device performance of the one-step selenized CIGS thin film were convincingly delineated by femtosecond pump-probe spectroscopy.

6.
Sci Rep ; 6: 35467, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739504

RESUMO

The majority of the proposed graphene-based THz devices consist of a metamaterial that can optically interact with graphene. This coupled graphene-metamaterial system gives rise to a family of resonant modes such as the surface plasmon polariton (SPP) modes of graphene, the geometrically induced SPPs, also known as the spoof SPP modes, and the Fabry-Perot (FP) modes. In the literature, these modes are usually considered separately as if each could only exist in one structure. By contrast, in this paper, we show that even in a simple metamaterial structure such as a one-dimensional (1D) metallic slit grating, these modes all exist and can potentially interact with each other. A graphene SPP-based THz device is also fabricated and measured. Despite the high scattering rate, the effective SPP resonances can still be observed and show a consistent trend between the effective frequency and the grating period, as predicted by the theory. We also find that the excitation of the graphene SPP mode is most efficient in the terahertz spectral region due to the Drude conductivity of graphene in this spectral region.

7.
J Phys Condens Matter ; 28(34): 345501, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27355241

RESUMO

The electronic structure and magnetic properties of SrMn0.5Fe0.5O3 powder and films grown on (1 0 0)-SrTiO3 (STO) and (1 0 0)-LaAlO3 (LAO) substrates by pulsed laser deposition (PLD) were investigated by temperature dependent magnetization and soft x-ray absorption. The results exhibit characteristics of 3d (5) Fe(3+), [Formula: see text], and 3d (3) + 3d (4) [Formula: see text] Mn(4+) at room temperature in all samples. However, the features of 3d (5) Fe(3+) and 3d (3) Mn(4+) increased significantly for SMFO/LAO at 35 K, which also displayed substantial competition between antiferromagnetic and ferromagnetic order well-above the Néel temperature of SrFeO3 (T N ~ 134 K). We attributed this to being caused by charge disproportionation resulting from ligand-hole localization, which is more favorable to take place when the sample is under compressive strain.

8.
Opt Express ; 24(5): 5039-5044, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092332

RESUMO

We report few-cycle THz pulses emission from a novel organic crystal 2,6-diaminopyridinium-4-nitrophenolate-4-nitrophenol (DAP+NP-NP). The observed amplitude of the THz electric field from a DAP+NP-NP crystal is comparable with that from a ZnTe single crystal under the same optical pumping conditions. Both the waveform and spectra of the THz radiation from DAP+NP-NP are similar to those from ZnTe. We conclude that a high quality DAP+NP-NP crystal would be a high potential candidate in THz generation and applications.

9.
Sci Rep ; 5: 18354, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26679958

RESUMO

In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

10.
Sci Rep ; 5: 14128, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26370337

RESUMO

Topological insulators (TIs) are interesting quantum matters that have a narrow bandgap for bulk and a Dirac-cone-like conducting surface state (SS). The recent discovered second Dirac surface state (SS) and bulk bands (BBs) located ~1.5 eV above the first SS are important for optical coupling in TIs. Here, we report on the time-domain measurements of THz radiation generated from TIs n-type Cu(0.02)Bi2Se3 and p-type Bi2Te3 single crystals by ultrafast optical pulse excitation. The observed polarity-reversal of the THz pulse originated from transient current is unusual, and cannot be reconciled with the photo-Dember effect. The second SS and BBs are found to be indispensable for the explanation of the unusual phenomenon. Thanks to the existence of the second SS and BBs, TIs manifest an effective wide band gap in THz generation. The present study demonstrates that time-domain THz spectroscopy provide rich information of the optical coupling and the electronic structure of TIs.

11.
Sci Rep ; 5: 8289, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25656222

RESUMO

The inherent valley-contrasting optical selection rules for interband transitions at the K and K' valleys in monolayer MoS2 have attracted extensive interest. Carriers in these two valleys can be selectively excited by circularly polarized optical fields. The comprehensive dynamics of spin valley coupled polarization and polarized exciton are completely resolved in this work. Here, we present a systematic study of the ultrafast dynamics of monolayer MoS2 including spin randomization, exciton dissociation, free carrier relaxation, and electron-hole recombination by helicity- and photon energy-resolved transient spectroscopy. The time constants for these processes are 60 fs, 1 ps, 25 ps, and ~300 ps, respectively. The ultrafast dynamics of spin polarization, valley population, and exciton dissociation provides the desired information about the mechanism of radiationless transitions in various applications of 2D transition metal dichalcogenides. For example, spin valley coupled polarization provides a promising way to build optically selective-driven ultrafast valleytronics at room temperature. Therefore, a full understanding of the ultrafast dynamics in MoS2 is expected to provide important fundamental and technological perspectives.

12.
ACS Appl Mater Interfaces ; 7(8): 4457-62, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25692773

RESUMO

The organic solar cells of heterojunction system, ITO/PEDOT:PSS/P3HT:PCBM/Al, with a thermal annealing after deposition of Al exhibit better performance than those with an annealing process before deposition of Al. In this study, ultrafast time-resolved spectroscopy is employed to reveal the underlying mechanism of annealing effects on the performance of P3HT:PCBM solar cell devices. The analyses of all decomposed relaxation processes show that the postannealed devices exhibit an increase in charge transfer, in the number of separated polarons and a reduction in the amount of recombination between excited carriers. Moreover, the longer lifetime for the excited carriers in postannealed devices indicates it is more likely to be dissociated into photocarriers and result in a larger value for photocurrent, which demonstrates the physical mechanism for increased device performance.

13.
ACS Nano ; 8(9): 9341-8, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25093682

RESUMO

We have successfully demonstrated a great advantage of plasmonic Au nanoparticles for efficient enhancement of Cu(In,Ga)Se2(CIGS) flexible photovoltaic devices. The incorporation of Au NPs can eliminate obstacles in the way of developing ink-printing CIGS flexible thin film photovoltaics (TFPV), such as poor absorption at wavelengths in the high intensity region of solar spectrum, and that occurs significantly at large incident angle of solar irradiation. The enhancement of external quantum efficiency and photocurrent have been systematically analyzed via the calculated electromagnetic field distribution. Finally, the major benefits of the localized surface plasmon resonances (LSPR) in visible wavelength have been investigated by ultrabroadband pump-probe spectroscopy, providing a solid evidence on the strong absorption and reduction of surface recombination that increases electron-hole generation and improves the carrier transportation in the vicinity of pn-juction.

14.
Nanoscale Res Lett ; 9(1): 280, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959108

RESUMO

In this work, CuIn1 - x Ga x Se2 (CIGS) thin films were prepared by nanosecond (ns)- and femtosecond (fs)-pulsed laser deposition (PLD) processes. Different film growth mechanisms were discussed in perspective of the laser-produced plasmas and crystal structures. The fs-PLD has successfully improved the inherent flaws, Cu2 - x Se, and air voids ubiquitously observed in ns-PLD-derived CIGS thin films. Moreover, the prominent antireflection and excellent crystalline structures were obtained in the fs-PLD-derived CIGS thin films. The absorption spectra suggest the divergence in energy levels of radiative defects brought by the inhomogeneous distribution of elements in the fs-PLD CIGS, which has also been supported by comparing photoluminescence (PL) spectra of ns- and fs-PLD CIGS thin films at 15 K. Finally, the superior carrier transport properties in fs-PLD CIGS were confirmed by fs pump-probe spectroscopy and four-probe measurements. The present results indicate a promising way for preparing high-quality CIGS thin films via fs-PLD.

15.
ACS Nano ; 7(8): 7318-29, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23906340

RESUMO

We present systematic works in characterization of CIGS nanotip arrays (CIGS NTRs). CIGS NTRs are obtained by a one-step ion-milling process by a direct-sputtering process of CIGS thin films (CIGS TF) without a postselenization process. At the surface of CIGS NTRs, a region extending to 100 nm in depth with a lower copper concentration compared to that of CIGS TF has been discovered. After KCN washing, removal of secondary phases can be achieved and a layer with abundant copper vacancy (V(Cu)) was left. Such compositional changes can be a benefit for a CIGS solar cell by promoting formation of Cd-occupied Cu sites (Cd(Cu)) at the CdS/CIGS interface and creates a type-inversion layer to enhance interface passivation and carrier extraction. The raised V(Cu) concentration and enhanced Cd diffusion in CIGS NTRs have been verified by energy dispersive spectrometry. Strengthened adhesion of Al:ZnO (AZO) thin film on CIGS NTRs capped with CdS has also been observed in SEM images and can explain the suppressed series resistance of the device with CIGS NTRs. Those improvements in electrical characteristics are the main factors for efficiency enhancement rather than antireflection.

16.
Opt Express ; 20 Suppl 6: A836-42, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187660

RESUMO

In this paper, we examine photoluminescence spectra of Cu(In,Ga)Se(2) (CIGS) via temperature-dependent and power-dependent photoluminescence (PL). Donor-acceptor pair (DAP) transition, near-band-edge transition were identified by their activation energies. S-shaped displacement of peak position was observed and was attributed to carrier confinement caused by potential fluctuation. This coincides well with the obtained activation energy at low temperature. We also present a model for transition from V(Se) to V(In) and to V(Cu) which illustrates competing mechanisms between DAPs recombinations.

17.
Opt Express ; 20(12): 12675-81, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714296

RESUMO

Ultrafast carrier dynamics in Cu(In,Ga)Se2 films are investigated using femtosecond pump-probe spectroscopy. Samples prepared by direct sputtering and co-evaporation processes, which exhibited remarkably different crystalline structures and free carrier densities, were found to result in substantially different carrier relaxation and recombination mechanisms. For the sputtered CIGS films, electron-electron scattering and Auger recombination was observed, whereas for the co-evaporated CIGS films, bandgap renormalization accompanied by band filling effect and hot phonon relaxation was observed. The lifetime of defect-related recombination in the co-evaporated CIGS films is much longer than that in the direct-sputtered CIGS films, reflecting a better quality with higher energy conversion efficiency of the former.

18.
Opt Express ; 20(5): 5029-37, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418307

RESUMO

Centimeter-sized Te-doped GaSe ingots were grown from the charge compositions of GaSe with nominals 0.05, 0.1, 0.5, 1, and 3 mass% Te, which were identified as ε-GaSe:Te (0.01, 0.07, 0.38, 0.67, and 2.07 mass%) single crystals. The evolution of the absorption peaks of the phonon modes E'(2) (≈ 0.584 THz) and E"(2) (1.77 THz) on Te-doping in GaSe:Te crystals was studied by THz time-domain spectroscopy. This study proposes that the evolution of both E'(2) and E''(2) absorption peaks correlates well with the optical quality of Te-doped GaSe crystals, which was confirmed by experimental results on the efficiency of THz generation by optical rectification. Maximal intensity of the absorption peak of the rigid layer mode E'(2) is proposed as a criterion for identification of optimal Te-doping in GaSe crystals.


Assuntos
Gálio/química , Selênio/química , Semicondutores , Telúrio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Dinâmica não Linear , Refratometria
19.
Opt Express ; 20(23): A836-42, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23326831

RESUMO

In this paper, we examine photoluminescence spectra of Cu(In,Ga)Se(2) (CIGS) via temperature-dependent and power-dependent photoluminescence (PL). Donor-acceptor pair (DAP) transition, near-band-edge transition were identified by their activation energies. S-shaped displacement of peak position was observed and was attributed to carrier confinement caused by potential fluctuation. This coincides well with the obtained activation energy at low temperature. We also present a model for transition from V(Se) to V(In) and to V(Cu) which illustrates competing mechanisms between DAPs recombinations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...