Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 16: 147-154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39007089

RESUMO

Disruption of the blood-central nervous system barrier (BCB) is increasingly recognized as a pathological factor in diseases and trauma of the central nervous system. Despite the neuropathological impact, current treatment modalities do not target the BCB; strategies to reconstitute the impaired BCB have been restricted to nutritional and dietary remedies. As an integral cell type in the neurovascular unit, pericytes are crucial to the development, maintenance, and repair of the BCB. As such, pericytes are well poised as cellular agents for reconstitution of the impaired BCB. Here, we summarize recent revelations regarding the role of BCB disruption in diseases and trauma of the central nervous system and highlight how pericytes are harnessed to provide targeted therapeutic effect in each case. This review will also address how recent advances in pericyte derivation strategies can serve to overcome practical hurdles in the clinical use of pericytes.

2.
Cell Mol Life Sci ; 81(1): 147, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502309

RESUMO

GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets. Whole-cell patch-clamp recording, coupled with optogenetics, was conducted in vitro to examine the synaptic function of MVN circuitry. Chemogenetic targeting strategy was also employed in vivo to manipulate neuronal activity during navigational tests. We found in rats a neonatal critical period before postnatal day (P) 8 in which competitive antagonization of GABAergic transmission in the MVN retarded maturation of inhibitory neurotransmission, as evidenced by deranged developmental trajectory for excitation/inhibition ratio and an extended period of critical period-like plasticity in GABAergic transmission. Despite increased number of PV-expressing GABAergic interneurons in the MVN, optogenetic-coupled patch-clamp recording indicated null-recruitment of these neurons in tuning outputs along the ascending vestibular pathway. Such perturbation not only offset output dynamics of ascending MVN output neurons, but was further accompanied by impaired vestibular-dependent navigation in adulthood. The same perturbations were however non-consequential when applied after P8. Results highlight neonatal GABAergic transmission as key to establishing feedforward output dynamics to higher brain centers for spatial cognition and navigation.


Assuntos
Navegação Espacial , Ratos , Animais , Interneurônios , Transmissão Sináptica , Núcleos Vestibulares/metabolismo , Neurônios GABAérgicos
3.
IBRO Neurosci Rep ; 15: 107-115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204574

RESUMO

Motions sickness (MS) occurs when the brain receives conflicting sensory signals from vestibular, visual and proprioceptive systems about a person's ongoing position and/or motion in relation to space. MS is typified by symptoms such as nausea and emesis and implicates complex physiological aspects of sensations and sensorimotor reflexes. Use of animal models has been integral to unraveling the physiological causality of MS. The commonly used rodents (rat and mouse), albeit lacking vomiting reflex, reliably display phenotypic behaviors of pica (eating of non-nutritive substance) and conditioned taste aversion (CTAver) or avoidance (CTAvoi) which utilize neural substrates with pathways that cause gastrointestinal malaise akin to nausea/emesis. As such, rodent pica and CTAver/CTAvoi have been widely used as proxies for nausea/emesis in studies dealing with neural mechanisms of nausea/emesis and MS, as well as for evaluating therapeutics. This review presents the rationale and experimental evidence that support the use of pica and CTAver/CTAvoi as indices for nausea and emesis. Key experimental steps and cautions required when using rodent MS models are also discussed. Finally, future directions are suggested for studying MS with rodent pica and CTAver/CTAvoi models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA