Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(49): 54981-54991, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36450004

RESUMO

Large-scale production of vertically aligned single-walled carbon nanotubes (VA-SWCNTs) on metal foils promises to enable technological advancements in many fields, from functional composites to energy storage to thermal interfaces. In this work, we demonstrate growth of high-quality (G/D > 6, average diameters ∼ 2-3 nm, densities > 1012 cm-2) VA-SWCNTs on Inconel metal for use as a lithium-ion battery (LIB) anode. Scale-up of SWCNT growth on Inconel 625 to 100 cm2 exhibits nearly invariant CNT structural properties, even when synthesis is performed near atmospheric pressure, and this robustness is attributed to a growth kinetic regime dominated by the carbon precursor diffusion in the bulk gas mixture. SWCNT forests produced on large-area metal substrates at close to atmospheric pressure possess a combination of structural features that are among the best demonstrated so far in the literature for growth on metal foils. Leveraging these achievements for energy applications, we demonstrate a VA-SWCNT LIB anode with capacity >1200 mAh/g at 1.0C and stable cycling beyond 300 cycles. This robust synthesis of high-quality VA-SWCNTs on metal foils presents a promising route toward mass production of high-performance CNT devices for a broad range of applications.

2.
ACS Appl Mater Interfaces ; 13(31): 37873-37882, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327985

RESUMO

Calcium oxalate monohydrate (COM) crystal is the most common crystalline component of human kidney stones. The molecular-scale inhibitory mechanisms of COM crystal growth by urinary biomolecules such as citrate and osteopontin adsorbed onto the crystal surface are now well understood. However, the pathways by which dissolved calcium and oxalate ions are incorporated into the molecular step of the COM crystal surface, leading to COM crystal growth-a prerequisite to be elucidated for developing effective therapeutics to inhibit COM stones-remain unknown. Here, using in situ liquid-phase atomic microscopy along with a step kinetic model, we reveal the pathways of the calcium and oxalate ions into the COM molecular step via the growth speed analysis of the molecular steps with respect to their step width at the nanoscale. Our results show that, primarily, the ions are adsorbed onto the terrace of the crystal surface from the solution-the rate-controlling stage for the molecular step growth, i.e., COM crystal growth-and then diffuse over it and are eventually incorporated into the steps. This primary pathway of the ions is unaffected by the model peptide D-Asp6 adsorbed on the COM crystal surface, suggesting that urinary biomolecules will not alter the pathway. These new findings rendering an essential understanding of the fundamental growth mechanism of COM crystal at the nanoscale provide crucial insights beneficial to the development of effective therapeutics for COM kidney stones.


Assuntos
Oxalato de Cálcio/química , Adsorção , Cálcio/química , Cristalização , Difusão , Cinética , Microscopia de Força Atômica/métodos
3.
Adv Sci (Weinh) ; 8(3): 2001802, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552850

RESUMO

Simulations and experiments have revealed enormous transport rates through carbon nanotube (CNT) channels when a pressure gradient drives fluid flow, but comparatively little attention has been given to concentration-driven transport despite its importance in many fields. Here, membranes are fabricated with a known number of single-walled CNTs as fluid transport pathways to precisely quantify the diffusive flow through CNTs. Contrary to early experimental studies that assumed bulk or hindered diffusion, measurements in this work indicate that the permeability of small ions through single-walled CNT channels is more than an order of magnitude higher than through the bulk. This flow enhancement scales with the ion free energy of transfer from bulk solutions to a nanoconfined, lower-dielectric environment. Reported results suggest that CNT membranes can unlock dialysis processes with unprecedented efficiency.

4.
Adv Sci (Weinh) ; 7(24): 2001670, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344119

RESUMO

Enhanced fluid transport in single-walled carbon nanotubes (SWCNTs) promises to enable major advancements in many membrane applications, from efficient water purification to next-generation protective garments. Practical realization of these advancements is hampered by the challenges of fabricating large-area, defect-free membranes containing a high density of open, small diameter SWCNT pores. Here, large-scale (≈60 cm2) nanocomposite membranes comprising of an ultrahigh density (1.89 × 1012 tubes cm-2) of 1.7 nm SWCNTs as sole transport pathways are demonstrated. Complete opening of all conducting nanotubes in the composite enables unprecedented accuracy in quantifying the enhancement of pressure-driven transport for both gases (>290× Knudsen prediction) and liquids (6100× no-slip Hagen-Poiseuille prediction). Achieved water permeances (>200 L m-2 h-1 bar-1) greatly exceed those of state-of-the-art commercial nano- and ultrafiltration membranes of similar pore size. Fabricated membranes reject nanometer-sized molecules, permit fractionation of dyes from concentrated salt solutions, and exhibit excellent chemical resistance. Altogether, these SWCNT membranes offer new opportunities for energy-efficient nano- and ultrafiltration processes in chemically demanding environments.

5.
ACS Nano ; 11(6): 5405-5416, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28414424

RESUMO

Fundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.5 µm. Fully resolved structural features include the graphitic honeycomb lattice and interlayer walls (atomic), CNT diameter (nano), as well as the greater CNT ensemble (meso) and large corrugations (micro). Correlating orientational order across hierarchical levels revealed a cascading decrease as we probed finer structural feature sizes with enhanced sensitivity to small-scale disorder. Furthermore, we established qualitative relationships for single-, few-, and multiwall CNT forest characteristics, showing that multiscale orientational order is directly correlated with number density spanning 109-1012 cm-2, yet order is inversely proportional to CNT diameter, number of walls, and atomic defects. Lastly, we captured and quantified ultralow-q meridional scattering features and built a phenomenological model of the large-scale CNT forest morphology, which predicted and confirmed that these features arise due to microscale corrugations along the vertical forest direction. Providing detailed structural information at multiple length scales is important for design and synthesis of CNT materials as well as other hierarchically organized nanostructures.

6.
Adv Mater ; 28(28): 6020, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27442972

RESUMO

A flexible membrane with sub-5 nm single-walled carbon nanotube (SWNT) pores is developed by F. Fornasiero and co-workers, as described on page 5871, for application as a key component of protective, yet breathable fabrics. The SWNTs are shown to enable exceptionally fast transport of water vapor under a concentration driving force. Thus, membranes having SWNTs as moisture-conductive pores feature outstanding breathability and provide a high degree of protection from biological threats by size exclusion.

7.
Adv Mater ; 28(28): 5871-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27159328

RESUMO

Small-diameter carbon nanotubes (CNTs) are shown to enable exceptionally fast transport of water vapor under a concentration gradient driving force. Thanks to this property, membranes having sub-5 nm CNTs as conductive pores feature outstanding breathability while maintaining a high degree of protection from biothreats by size exclusion.

8.
ACS Appl Mater Interfaces ; 5(16): 8111-9, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23895541

RESUMO

We report on simple and efficient routes to dope polydicyclopentadiene (PDCPD)-based aerogels and their coatings with high-Z tracer elements. Initially, direct halogenation of PDCPD wet gels and aerogels with elemental iodine or bromine was studied. Although several pathways were identified that allowed doping of PDCPD aerogels by direct addition of bromine or iodine to the unsaturated polymer backbone, they all provided limited control over the amount and uniformity of doping, especially at very low dopant concentrations. Deterministic control over the doping level in polymeric aerogels and aerogel coatings was then achieved by developing a copolymerization approach with iodine and tin containing comonomers. Our results highlight the versatility of the ring-opening metathesis polymerization (ROMP)-based copolymerization approach in terms of functionalization and doping of low density polymeric aerogels and their coatings.


Assuntos
Indenos/química , Polímeros/química , Oligoelementos/química , Géis/química , Iodetos/química , Polimerização
9.
Methods Mol Biol ; 656: 267-81, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20680597

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has proven to be an extremely powerful tool for characterizing chemical distributions within biological cells and tissues. However, differentiating biological samples, e.g., cancerous cells from their normal counterparts or benign tissues from malignant tissues, presents unique challenges to ToF-SIMS. Repeatable differentiation of such samples, especially formalin-fixed paraffin-embedded (FFPE) histological specimens, could be used to improve tissue-based diagnosis and aid in prognosis decisions. In this chapter, we describe a strategy for characterizing and differentiating FFPE tissues. ToF-SIMS was used to image deparaffinized FFPE mouse embryos and differentiate tissue types. The robustness and repeatability of the method was determined by analyzing ten tissue slices from three different embryos over a period of 1 month. Using principal component analysis (PCA) to reduce the spectral data generated by ToF-SIMS, histopathologically identified tissue types of the mouse embryos can be differentiated based on the characteristic differences in their mass spectra.


Assuntos
Diagnóstico por Imagem/métodos , Espectrometria de Massa de Íon Secundário/métodos , Animais , Diferenciação Celular/fisiologia , Embrião de Mamíferos/citologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal
10.
J Am Soc Mass Spectrom ; 19(8): 1230-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18565760

RESUMO

Characterizing chemical changes within individual cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Analyzing biological systems with imaging and profiling mass spectrometry (MS) has gained popularity in recent years as a method for creating chemical maps of biological samples. To obtain mass spectra that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell culture components are removed from the cell surface and that the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging/profiling MS that removes the majority of the interfering species derived from the cellular growth medium, preserves the basic morphology of the cells, and allows chemical profiling of the diffusible elements of the cytosol. Using this method, we are able to reproducibly analyze cells from three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique makes possible routine imaging/profiling MS analysis of individual cultured cells, allowing for understanding of molecular processes within individual cells.


Assuntos
Separação Celular/métodos , Células/química , Animais , Linhagem Celular Tumoral , Proliferação de Células , Criopreservação , Humanos , Indicadores e Reagentes , Espectrometria de Massas , Reprodutibilidade dos Testes , Soluções
11.
Langmuir ; 24(9): 5179-84, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18380510

RESUMO

Photocatalytic lithography couples light with photoreactive coated mask materials to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously is suited for use with a wide variety of substrates. It is fast and robust, and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells to demonstrate the utility of photocatalytic lithography in life science applications.


Assuntos
Fotoquímica/métodos , Porfirinas/química , Adsorção , Disciplinas das Ciências Biológicas/métodos , Catálise , Espectrometria de Massas , Microscopia de Força Atômica , Fármacos Fotossensibilizantes/química , Espectrofotometria , Propriedades de Superfície
12.
Anal Chem ; 79(15): 5711-8, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17614364

RESUMO

Here we report the design, implementation, and initial use of an asymmetric steady-state continuous dual-nanospray ion source. This new source design consists of two independently controlled and continuously operating nanospray interfaces with funnel shaped counter electrodes. A steady-state ion mixing region combines the ions from the two sources into a single ion beam in the intermediate region after ion extraction from the nanospray sources but before the bulk of the pressure gradient of the vacuum interface. With this design we have achieved robust mixing of ions with no loss of duty cycle and remarkable ionization characteristics that appear entirely noncompetitive and potentially beneficial. This allows continuous introduction of internal mass calibration ions during a liquid chromatography-mass spectrometric analysis. This in turn allows for recalibration of individual spectra yielding sub part per million mass accuracy throughout the run. The steady-state approach presented here has several advantages over previous approaches. Since neither the voltage nor positions of the sprayers are changed, the nanospray has greater spray stability. The ions produced by the analyte sprayer are continuously sampled, as opposed to time-sharing which necessitates that the analyte ion stream be interrupted for some part of the duty cycle. There are no moving parts, no rapid changes to high voltages requiring additional control electronics, and no need for completely separate vacuum interfaces and the associated complexity. The sprayers are independently controlled and do not exhibit competition or mutual ionization suppression. This novel source has been implemented with a Bruker Apex II 9.4 T FTICR with a modified Apollo electrospray ion source as part of a nanoflow liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry analysis platform. Because of the low cost of implementation, the new source could potentially be applied to other forms of mass spectrometry, such as electrospray ionization-time-of-flight (ESI-TOF), which can benefit from internal mass calibration.


Assuntos
Cromatografia Líquida/métodos , Ciclotrons/instrumentação , Peptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sequência de Aminoácidos , Calibragem , Cromatografia Líquida/instrumentação , Íons , Dados de Sequência Molecular , Peptídeos/química , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Fatores de Tempo
13.
Anal Chem ; 78(18): 6497-503, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16970326

RESUMO

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is utilized to examine the mass spectra and fragmentation patterns of seven isomeric monosaccharides. Multivariate statistical analysis techniques, including principal component analysis (PCA), allow discrimination of the extremely similar mass spectra of stereoisomers. Furthermore, PCA identifies those fragment peaks that vary significantly between spectra. Heavy isotope studies confirm that these peaks are indeed sugar fragments, allow identification of the fragments, and provide clues to the fragmentation pathways. Excellent reproducibility is shown by multiple experiments performed over time and on separate samples. This study demonstrates the combined selectivity and discrimination power of TOF-SIMS and PCA and suggests new applications of the technique including differentiation of subtle chemical changes in biological samples that may provide insights into cellular processes, disease progress, and disease diagnosis.


Assuntos
Espectrometria de Massas/métodos , Monossacarídeos/química , Análise de Componente Principal , Reprodutibilidade dos Testes , Estereoisomerismo
14.
Anal Chem ; 78(11): 3651-8, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16737220

RESUMO

We use time-of-flight secondary ion mass spectrometry (TOF-SIMS) to image and classify individual cells on the basis of their characteristic mass spectra. Using statistical data reduction on the large data sets generated during TOF-SIMS analysis, similar biological materials can be differentiated on the basis of a combination of small changes in protein expression, metabolic activity and cell structure. We apply this powerful technique to image and differentiate three carcinoma-derived human breast cancer cell lines (MCF-7, T47D, and MDA-MB-231). In homogenized cells, we show the ability to differentiate the cell types as well as cellular compartments (cytosol, nuclear, and membrane). These studies illustrate the capacity of TOF-SIMS to characterize individual cells by chemical composition, which could ultimately be applied to detect and identify single aberrant cells within a normal cell population. Ultimately, we anticipate characterizing rare chemical changes that may provide clues to single cell progression within carcinogenic and metastatic pathways.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Espectrometria de Massa de Íon Secundário/métodos , Aminoácidos/química , Neoplasias da Mama/química , Linhagem Celular Tumoral , Humanos , Proteínas/química , Fatores de Tempo
15.
Chem Biodivers ; 2(11): 1495-502, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17191949

RESUMO

Time-Of-Flight Mass Spectrometry (TOF-SIMS) was used to determine elemental and biomolecular ions from isolated protein samples. We identified a set of 23 mass-to-charge ratio (m/z) peaks that represent signatures for distinguishing biological samples. The 23 peaks were identified by Singular Value Decomposition (SVD) and Canonical Analysis (CA) to find the underlying structure in the complex mass-spectra data sets. From this modified data, SVD was used to identify sets of m/z peaks, and we used these patterns from the TOF-SIMS data to predict the biological source from which individual mass spectra were generated. The signatures were validated using an additional data set different from the initial training set used to identify the signatures. We present a simple method to identify multiple variables required for sample classification based on mass spectra that avoids overfit. This is important in a variety of studies using mass spectrometry, including the ability to identify proteins in complex mixtures and for the identification of new biomarkers.


Assuntos
Produtos Biológicos/análise , Espectrometria de Massa de Íon Secundário/métodos , Proteínas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...