Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 133: 103609, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101147

RESUMO

The mammalian SWI/SNF chromatin remodelling complexes are commonly dysregulated in cancer. These complexes contribute to maintaining genome stability through a variety of pathways. Recent research has highlighted an important interplay between genome instability and immune signalling, and evidence suggests that this interplay can modulate the response to immunotherapy. Here, we review emerging studies where direct evidence of this relationship has been uncovered in SWI/SNF deficient cells. We also highlight genome maintenance activities of SWI/SNF that could potentially shape immune responses and discuss potential therapeutic implications.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Instabilidade Genômica , Reparo do DNA , Imunidade , Montagem e Desmontagem da Cromatina , Mamíferos/genética
2.
Biosensors (Basel) ; 13(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37622906

RESUMO

Surveillance of viral pathogens in both point-of-care and clinical settings is imperative to preventing the widespread propagation of disease-undetected viral outbreaks can pose dire health risks on a large scale. Thus, portable, accessible, and reliable biosensors are necessary for proactive measures. Polymeric microparticles have recently gained popularity for their size, surface area, and versatility, which make them ideal biosensing tools. This review cataloged recent investigations on polymeric microparticle-based detection platforms across eight virus families. These microparticles were used as labels for detection (often with fluorescent microparticles) and for capturing viruses for isolation or purification (often with magnetic microparticles). We also categorized all methods by the characteristics, materials, conjugated receptors, and size of microparticles. Current approaches were compared, addressing strengths and weaknesses in the context of virus detection. In-depth analyses were conducted for each virus family, categorizing whether the polymeric microparticles were used as labels, for capturing, or both. We also summarized the types of receptors conjugated to polymeric microparticles for each virus family.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Polímeros
3.
Analyst ; 147(13): 2980-2987, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35648102

RESUMO

The potential of bacterial contamination is commonly seen in biological and clinical laboratory surfaces, creating a need to detect the presence of bacteria on a surface. Various bacterial species have been found to naturally exist on surfaces, including Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus that were investigated in this study. Bacterial presence was identified from laboratory surfaces using a smartphone and low-cost components without culturing or staining. Autofluorescence from bacteria was quantified using a 405 nm LED as an excitation light source. A low-cost acrylic film could isolate the autofluorescence emission. ImageJ was used to process and analyze the images and quantify the emitted autofluorescence signal. This imaging platform successfully detected the presence of all three bacterial species from the heavily used laboratory surfaces. A trend of decreasing fluorescence signal was observed with decreasing bacterial concentration, and the limit of detection was 104 CFU cm-2. It could also distinguish from tap water, protein (bovine serum albumin), and NaCl solutions. This preliminary work emphasizes the ability to detect autofluorescence signals of bacteria and non-microbial surface contaminants using a cost-effective and straightforward imaging platform.


Assuntos
Smartphone , Staphylococcus aureus , Bactérias , Escherichia coli , Imagem Óptica , Salmonella typhimurium
4.
Semin Cell Dev Biol ; 127: 79-89, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35042676

RESUMO

The centromere is a unique functional region on each eukaryotic chromosome where the kinetochore assembles and orchestrates microtubule attachment and chromosome segregation. Unlike monocentromeres that occupy a specific region on the chromosome, holocentromeres are diffused along the length of the chromosome. Despite being less common, holocentromeres have been verified in almost 800 nematode, insect, and plant species. Understanding of the molecular and epigenetic regulation of holocentromeres is lagging that of monocentromeres. Here we review how permissive locations for holocentromeres are determined across the genome, potentially by chromatin organisation, transcription, and non-coding RNAs, specifically in the nematode C. elegans. In addition, we discuss how holocentric CENP-A or CENP-T-containing nucleosomes are recruited and deposited, through the help of histone chaperones, licensing factors, and condensin complexes, both during de novo holocentromere establishment, and in each mitotic cell cycle. The process of resolving sister centromeres after DNA replication in holocentric organisms is also mentioned. Conservation and diversity between holocentric and monocentric organisms are highlighted, and outstanding questions are proposed.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Centrômero/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Mitose , Nematoides/genética , Nucleossomos/metabolismo
5.
SLAS Technol ; 27(1): 4-17, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058206

RESUMO

Airborne SARS-CoV-2 transmission represents a significant route for possible human infection that is not yet fully understood. Viruses in droplets and aerosols are difficult to detect because they are typically present in low amounts. In addition, the current techniques used, such as RT-PCR and virus culturing, require large amounts of time to get results. Biosensor technology can provide rapid, handheld, and point-of-care systems that can identify virus presence quickly and accurately. This paper reviews the background of airborne virus transmission and the characteristics of SARS-CoV-2, its relative risk for transmission even at distances greater than the currently suggested 6 feet (or 2 m) physical distancing. Publications on biosensor technology that may be applied to the detection of airborne SARS-CoV-2 and other respiratory viruses are also summarized. Based on the current research we believe that there is a pressing need for continued research into handheld and rapid methods for sensitive collection and detection of airborne viruses. We propose a paper-based microfluidic chip and immunofluorescence assay as one method that could be investigated as a low-cost and portable option.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vírus , Aerossóis , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...