Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1714, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402235

RESUMO

Near continuous phase transitions, universal power-law scaling, characterized by critical exponents, emerges. This behavior reflects the singular responses of physical systems to continuous control parameters like temperature or external fields. Universal scaling extends to non-equilibrium dynamics in isolated quantum systems after a quench, where time takes the role of the control parameter. Our research unveils critical scaling in time also during the relaxation dynamics of an open quantum system. Here we experimentally realize such a system by the spin of individual Cesium atoms dissipatively coupled through spin-exchange processes to a bath of ultracold Rubidium atoms. Through a finite-size scaling analysis of the entropy dynamics via numerical simulations, we identify a critical point in time in the thermodynamic limit. This critical point is accompanied by the divergence of a characteristic length, which is described by critical exponents that turn out to be unaffected by system specifics.

2.
Phys Rev Lett ; 131(7): 073201, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656843

RESUMO

Discrimination of entangled states is an important element of quantum-enhanced metrology. This typically requires low-noise detection technology. Such a challenge can be circumvented by introducing nonlinear readout process. Traditionally, this is realized by reversing the very dynamics that generates the entangled state, which requires a full control over the system evolution. In this Letter, we present nonlinear readout of highly entangled states by employing reinforcement learning to manipulate the spin-mixing dynamics in a spin-1 atomic condensate. The reinforcement learning found results in driving the system toward an unstable fixed point, whereby the (to be sensed) phase perturbation is amplified by the subsequent spin-mixing dynamics. Working with a condensate of 10 900 ^{87}Rb atoms, we achieve a metrological gain of 6.97_{-1.38}^{+1.30} dB beyond the classical precision limit. Our work will open up new possibilities in unlocking the full potential of entanglement caused quantum enhancement in experiments.

3.
Phys Rev E ; 104(1-1): 014110, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412241

RESUMO

Away from equilibrium, the properties of open quantum systems depend on the details of their environment. A microscopic derivation of a master equation (ME) is therefore crucial. Of particular interest are Lindblad-type equations, not only because they provide the most general class of Markovian MEs, but also since they are the starting point for efficient quantum trajectory simulations. Lindblad-type MEs are commonly derived from the Born-Markov-Redfield equation via a rotating-wave approximation (RWA). However the RWA is valid only for ultraweak system-bath coupling and often fails to accurately describe nonequilibrium processes. Here we derive an alternative Lindbladian approximation to the Redfield equation, which does not rely on ultraweak system-bath coupling. Applying it to an extended Hubbard model coupled to Ohmic baths, we show that, especially away from equilibrium, it provides a good approximation in large parameter regimes where the RWA fails.

4.
Phys Rev Lett ; 123(3): 030602, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386479

RESUMO

We investigate the relaxation dynamics of an interacting Stark-localized system coupled to a dephasing bath, and compare its behavior to the conventional disorder-induced many body localized system. Specifically, we study the dynamics of population imbalance between even and odd sites, and the growth of the von Neumann entropy. For a large potential gradient, the imbalance is found to decay on a timescale τ that grows quadratically with the Wannier-Stark tilt. For the noninteracting system, it shows an exponential decay, which becomes a stretched exponential decay in the presence of finite interactions. This is different from a system with disorder-induced localization, where the imbalance exhibits a stretched exponential decay also for vanishing interactions. As another clear qualitative difference, we do not find a logarithmically slow growth of the von Neumann entropy as it is found for the disordered system. Our findings can immediately be tested experimentally with ultracold atoms in optical lattices.

5.
Proc Natl Acad Sci U S A ; 115(25): 6381-6385, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29858344

RESUMO

Interferometry is a paradigm for most precision measurements. Using N uncorrelated particles, the achievable precision for a two-mode (two-path) interferometer is bounded by the standard quantum limit (SQL), [Formula: see text], due to the discrete (quanta) nature of individual measurements. Despite being a challenging benchmark, the two-mode SQL has been approached in a number of systems, including the Laser Interferometer Gravitational-Wave Observatory and today's best atomic clocks. For multimode interferometry, the SQL becomes [Formula: see text] using M modes. Higher precision can also be achieved using entangled particles such that quantum noises from individual particles cancel out. In this work, we demonstrate an interferometric precision of [Formula: see text] dB beyond the three-mode SQL, using balanced spin-1 (three-mode) Dicke states containing thousands of entangled atoms. The input quantum states are deterministically generated by controlled quantum phase transition and exhibit close to ideal quality. Our work shines light on the pursuit of quantum metrology beyond SQL.

6.
Sci Rep ; 7: 46756, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28447670

RESUMO

Spin-orbit coupling (SOC) plays an essential role in many exotic and interesting phenomena in condensed matter physics. In neutral-atom-based quantum simulations, synthetic SOC constitutes a key enabling element. The strength of SOC realized so far is limited by various reasons or constraints. This work reports tunable SOC synthesized with a gradient magnetic field (GMF) for atoms in a harmonic trap. Nearly ten-fold enhancement is observed when the GMF is modulated near the harmonic-trap resonance in comparison with the free-space situation. A theory is developed that well explains the experimental results. Our work offers a clear physical insight into and analytical understanding of how to tune the strength of atomic SOC synthesized with GMF using harmonic trap resonance.

7.
Science ; 355(6325): 620-623, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183976

RESUMO

Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a arubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...