Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
ISME J ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747385

RESUMO

Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (p < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.

2.
Nat Microbiol ; 9(2): 490-501, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212658

RESUMO

Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.


Assuntos
Água Subterrânea , Microbiota , Filogenia , Processos Estocásticos
3.
mSystems ; 8(6): e0102523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038441

RESUMO

IMPORTANCE: Amplicon sequencing of targeted genes is the predominant approach to estimate the membership and structure of microbial communities. However, accurate reconstruction of community composition is difficult due to sequencing errors, and other methodological biases and effective approaches to overcome these challenges are essential. Using a mock community of 33 phylogenetically diverse strains, this study evaluated the effect of GC content on sequencing results and tested different approaches to improve overall sequencing accuracy while characterizing the pros and cons of popular amplicon sequence data processing approaches. The sequencing results from this study can serve as a benchmarking data set for future algorithmic improvements. Furthermore, the new insights on sequencing error, chimera formation, and GC bias from this study will help enhance the quality of amplicon sequencing studies and support the development of new data analysis approaches.


Assuntos
Código de Barras de DNA Taxonômico , Microbiota , Composição de Bases , Análise de Sequência de DNA/métodos , Viés
4.
Nat Microbiol ; 7(7): 1054-1062, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697795

RESUMO

Anthropogenic climate change threatens ecosystem functioning. Soil biodiversity is essential for maintaining the health of terrestrial systems, but how climate change affects the richness and abundance of soil microbial communities remains unresolved. We examined the effects of warming, altered precipitation and annual biomass removal on grassland soil bacterial, fungal and protistan communities over 7 years to determine how these representative climate changes impact microbial biodiversity and ecosystem functioning. We show that experimental warming and the concomitant reductions in soil moisture play a predominant role in shaping microbial biodiversity by decreasing the richness of bacteria (9.6%), fungi (14.5%) and protists (7.5%). Our results also show positive associations between microbial biodiversity and ecosystem functional processes, such as gross primary productivity and microbial biomass. We conclude that the detrimental effects of biodiversity loss might be more severe in a warmer world.


Assuntos
Pradaria , Solo , Bactérias , Biodiversidade , Ecossistema , Microbiologia do Solo
5.
mBio ; 13(3): e0382921, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420482

RESUMO

Land conversion for intensive agriculture produces unfavorable changes to soil ecosystems, causing global concern. Soil bacterial communities mediate essential terrestrial ecosystem processes, making it imperative to understand their responses to agricultural perturbations. Here, we used high-throughput sequencing coupled with a functional gene array to study temporal dynamics of soil bacterial communities over 1 year under different disturbance intensities across a U.S. Southern Plains agroecosystem, including tallgrass prairie, Old World bluestem pasture, no-tillage (NT) canola, and conventional tillage (CT) wheat. Land use had the greatest impact on bacterial taxonomic diversity, whereas sampling time and its interaction with land use were central to functional diversity differences. The main drivers of taxonomic diversity were tillage > sampling time > temperature, while all measured factors explained similar amounts of variations in functional diversity. Temporal differences had the strongest correlation with total nitrogen > rainfall > nitrate. Within land uses, community variations for CT wheat were attributed to nitrogen levels, whereas soil organic matter and soil water content explained community variations for NT canola. In comparison, all measured factors contributed almost equally to variations in grassland bacterial communities. Finally, functional diversity had a stronger relationship with taxonomic diversity for CT wheat compared to phylogenetic diversity in the prairie. These findings reinforce that tillage management has the greatest impact on bacterial community diversity, with sampling time also critical. Hence, our study highlights the importance of the interaction between temporal dynamics and land use in influencing soil microbiomes, providing support for reducing agricultural disturbance to conserve soil biodiversity. IMPORTANCE Agricultural sustainability relies on healthy soils and microbial diversity. Agricultural management alters soil conditions and further influences the temporal dynamics of soil microbial communities essential to ecosystem functions, including organic matter dynamics, nutrient cycling, and plant nutrient availability. Yet, the responses to agricultural management are also dependent on soil type and climatic region, emphasizing the importance of assessing sustainability at local scales. To evaluate the impact of agricultural management practices, we examined bacterial communities across a management disturbance gradient over 1 year in a U.S. Southern Plains agroecosystem and determined that intensive management disturbance and sampling time critically impacted bacterial structural diversity, while their interactive effect influenced functional diversity and other soil health indicators. Overall, this study provides insights into how reducing soil disturbance can positively impact microbial community diversity and soil properties in the U.S. Southern Plains.


Assuntos
Microbiota , Microbiologia do Solo , Agricultura , Bactérias/genética , Biodiversidade , Nitrogênio/análise , Filogenia , Solo/química , Estados Unidos
6.
ISME J ; 16(1): 10-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211103

RESUMO

Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, 'Dust Bowl' remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO2 flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH4) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands.


Assuntos
Panicum , Solo , Carbono , Dióxido de Carbono/análise , Metano , Óxido Nitroso/análise , Solo/química
7.
ISME J ; 15(8): 2233-2247, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33612833

RESUMO

Early evolution of mutualism is characterized by big and predictable adaptive changes, including the specialization of interacting partners, such as through deleterious mutations in genes not required for metabolic cross-feeding. We sought to investigate whether these early mutations improve cooperativity by manifesting in synergistic epistasis between genomes of the mutually interacting species. Specifically, we have characterized evolutionary trajectories of syntrophic interactions of Desulfovibrio vulgaris (Dv) with Methanococcus maripaludis (Mm) by longitudinally monitoring mutations accumulated over 1000 generations of nine independently evolved communities with analysis of the genotypic structure of one community down to the single-cell level. We discovered extensive parallelism across communities despite considerable variance in their evolutionary trajectories and the perseverance within many evolution lines of a rare lineage of Dv that retained sulfate-respiration (SR+) capability, which is not required for metabolic cross-feeding. An in-depth investigation revealed that synergistic epistasis across pairings of Dv and Mm genotypes had enhanced cooperativity within SR- and SR+ assemblages, enabling their coexistence within the same community. Thus, our findings demonstrate that cooperativity of a mutualism can improve through synergistic epistasis between genomes of the interacting species, enabling the coexistence of mutualistic assemblages of generalists and their specialized variants.


Assuntos
Epistasia Genética , Simbiose , Mathanococcus/metabolismo , Mutação , Sulfatos/metabolismo
8.
Mol Ecol ; 30(4): 926-937, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33305411

RESUMO

High-latitude tundra ecosystems are increasingly affected by climate warming. As an important fraction of soil microorganisms, fungi play essential roles in carbon degradation, especially the old, chemically recalcitrant carbon. However, it remains obscure how fungi respond to climate warming and whether fungi, in turn, affect carbon stability of tundra. In a 2-year winter soil warming experiment of 2°C by snow fences, we investigated responses of fungal communities to warming in the active layer of an Alaskan tundra. Although fungal community composition, revealed by the 28S rRNA gene amplicon sequencing, remained unchanged (p > .05), fungal functional gene composition, revealed by a microarray named GeoChip, was altered (p < .05). Changes in functional gene composition were linked to winter soil temperature, thaw depth, soil moisture, and gross primary productivity (canonical correlation analysis, p < .05). Specifically, relative abundances of fungal genes encoding invertase, xylose reductase and vanillin dehydrogenase significantly increased (p < .05), indicating higher carbon degradation capacities of fungal communities under warming. Accordingly, we detected changes in fungal gene networks under warming, including higher average path distance, lower average clustering coefficient and lower percentage of negative links, indicating that warming potentially changed fungal interactions. Together, our study reveals higher carbon degradation capacities of fungal communities under short-term warming and highlights the potential impacts of fungal communities on tundra ecosystem respiration, and consequently future carbon stability of high-latitude tundra.


Assuntos
Micobioma , Solo , Carbono , Mudança Climática , Ecossistema , Microbiologia do Solo , Tundra
9.
Nat Commun ; 11(1): 4897, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994415

RESUMO

Soil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying microbial mechanisms are still poorly understood. Here we show that the temperature sensitivity of soil microbial respiration (Q10) in a temperate grassland ecosystem persistently decreases by 12.0 ± 3.7% across 7 years of warming. Also, the shifts of microbial communities play critical roles in regulating thermal adaptation of soil respiration. Incorporating microbial functional gene abundance data into a microbially-enabled ecosystem model significantly improves the modeling performance of soil microbial respiration by 5-19%, and reduces model parametric uncertainty by 55-71%. In addition, modeling analyses show that the microbial thermal adaptation can lead to considerably less heterotrophic respiration (11.6 ± 7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur generally across different spatial and temporal scales, the potential positive feedback of soil microbial respiration in response to climate warming may be less than previously predicted.


Assuntos
Carbono/análise , Metagenoma/genética , Microbiota/fisiologia , Microbiologia do Solo , Solo/química , Aclimatação/genética , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Celulose/metabolismo , DNA Ambiental/genética , DNA Ambiental/isolamento & purificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Aquecimento Global , Pradaria , Temperatura Alta/efeitos adversos , Metagenômica , Modelos Genéticos , Raízes de Plantas/química , Poaceae/química
10.
Environ Int ; 144: 106068, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32871382

RESUMO

Atmospheric CO2 concentration is increasing, largely due to anthropogenic activities. Previous studies of individual free-air CO2 enrichment (FACE) experimental sites have shown significant impacts of elevated CO2 (eCO2) on soil microbial communities; however, no common microbial response patterns have yet emerged, challenging our ability to predict ecosystem functioning and sustainability in the future eCO2 environment. Here we analyzed 66 soil microbial communities from five FACE sites, and showed common microbial response patterns to eCO2, especially for key functional genes involved in carbon and nitrogen fixation (e.g., pcc/acc for carbon fixation, nifH for nitrogen fixation), carbon decomposition (e.g., amyA and pulA for labile carbon decomposition, mnp and lcc for recalcitrant carbon decomposition), and greenhouse gas emissions (e.g., mcrA for methane production, norB for nitrous oxide production) across five FACE sites. Also, the relative abundance of those key genes was generally increased and directionally associated with increased biomass, soil carbon decomposition, and soil moisture. In addition, a further literature survey of more disparate FACE experimental sites indicated increased biomass, soil carbon decay, nitrogen fixation, methane and nitrous oxide emissions, plant and soil carbon and nitrogen under eCO2. A conceptual framework was developed to link commonly responsive functional genes with ecosystem processes, such as pcc/acc vs. soil carbon storage, amyA/pulA/mnp/lcc vs. soil carbon decomposition, and nifH vs. nitrogen availability, suggesting that such common responses of microbial functional genes may have the potential to predict ecosystem functioning and sustainability in the future eCO2 environment.


Assuntos
Dióxido de Carbono , Ecossistema , Biomassa , Dióxido de Carbono/análise , Nitrogênio , Solo , Microbiologia do Solo
11.
Microbiome ; 8(1): 3, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952472

RESUMO

BACKGROUND: It is well-known that global warming has effects on high-latitude tundra underlain with permafrost. This leads to a severe concern that decomposition of soil organic carbon (SOC) previously stored in this region, which accounts for about 50% of the world's SOC storage, will cause positive feedback that accelerates climate warming. We have previously shown that short-term warming (1.5 years) stimulates rapid, microbe-mediated decomposition of tundra soil carbon without affecting the composition of the soil microbial community (based on the depth of 42684 sequence reads of 16S rRNA gene amplicons per 3 g of soil sample). RESULTS: We show that longer-term (5 years) experimental winter warming at the same site altered microbial communities (p < 0.040). Thaw depth correlated the strongest with community assembly and interaction networks, implying that warming-accelerated tundra thaw fundamentally restructured the microbial communities. Both carbon decomposition and methanogenesis genes increased in relative abundance under warming, and their functional structures strongly correlated (R2 > 0.725, p < 0.001) with ecosystem respiration or CH4 flux. CONCLUSIONS: Our results demonstrate that microbial responses associated with carbon cycling could lead to positive feedbacks that accelerate SOC decomposition in tundra regions, which is alarming because SOC loss is unlikely to subside owing to changes in microbial community composition. Video Abstract.


Assuntos
Ciclo do Carbono , Aquecimento Global , Microbiota , Pergelissolo/microbiologia , Microbiologia do Solo , Solo/química , Carbono/metabolismo , Metano/metabolismo , RNA Ribossômico 16S/genética , Estações do Ano
12.
Microb Biotechnol ; 12(6): 1464-1475, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31536680

RESUMO

Understanding the changes in plant-microbe interactions is critically important for predicting ecosystem functioning in response to human-induced environmental changes such as nitrogen (N) addition. In this study, the effects of a century-long fertilization treatment (> 150 years) on the networks between plants and soil microbial functional communities, detected by GeoChip, in grassland were determined in the Park Grass Experiment at Rothamsted Research, UK. Our results showed that plants and soil microbes have a consistent response to long-term fertilization-both richness and diversity of plants and soil microbes are significantly decreased, as well as microbial functional genes involved in soil carbon (C), nitrogen (N) and phosphorus (P) cycling. The network-based analyses showed that long-term fertilization decreased the complexity of networks between plant and microbial functional communities in terms of node numbers, connectivity, network density and the clustering coefficient. Similarly, within the soil microbial community, the strength of microbial associations was also weakened in response to long-term fertilization. Mantel path analysis showed that soil C and N contents were the main factors affecting the network between plants and microbes. Our results indicate that century-long fertilization weakens the plant-microbe networks, which is important in improving our understanding of grassland ecosystem functions and stability under long-term agriculture management.


Assuntos
Fertilizantes , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Plantas/microbiologia , Microbiologia do Solo , Carbono/análise , Nitrogênio/análise , Solo/química , Reino Unido
13.
ISME J ; 13(12): 2901-2915, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31384013

RESUMO

The susceptibility of soil organic carbon (SOC) in tundra to microbial decomposition under warmer climate scenarios potentially threatens a massive positive feedback to climate change, but the underlying mechanisms of stable SOC decomposition remain elusive. Herein, Alaskan tundra soils from three depths (a fibric O horizon with litter and course roots, an O horizon with decomposing litter and roots, and a mineral-organic mix, laying just above the permafrost) were incubated. Resulting respiration data were assimilated into a 3-pool model to derive decomposition kinetic parameters for fast, slow, and passive SOC pools. Bacterial, archaeal, and fungal taxa and microbial functional genes were profiled throughout the 3-year incubation. Correlation analyses and a Random Forest approach revealed associations between model parameters and microbial community profiles, taxa, and traits. There were more associations between the microbial community data and the SOC decomposition parameters of slow and passive SOC pools than those of the fast SOC pool. Also, microbial community profiles were better predictors of model parameters in deeper soils, which had higher mineral contents and relatively greater quantities of old SOC than in surface soils. Overall, our analyses revealed the functional potential of microbial communities to decompose tundra SOC through a suite of specialized genes and taxa. These results portray divergent strategies by which microbial communities access SOC pools across varying depths, lending mechanistic insights into the vulnerability of what is considered stable SOC in tundra regions.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Carbono/análise , Fungos/isolamento & purificação , Microbiota , Microbiologia do Solo , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Carbono/metabolismo , Mudança Climática , Fungos/classificação , Fungos/genética , Pergelissolo/microbiologia , Solo/química , Tundra
14.
Proc Natl Acad Sci U S A ; 116(30): 15096-15105, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285347

RESUMO

Northern-latitude tundra soils harbor substantial carbon (C) stocks that are highly susceptible to microbial degradation with rising global temperatures. Understanding the magnitude and direction (e.g., C release or sequestration) of the microbial responses to warming is necessary to accurately model climate change. In this study, Alaskan tundra soils were subjected to experimental in situ warming by ∼1.1 °C above ambient temperature, and the microbial communities were evaluated using metagenomics after 4.5 years, at 2 depths: 15 to 25 cm (active layer at outset of the experiment) and 45 to 55 cm (transition zone at the permafrost/active layer boundary at the outset of the experiment). In contrast to small or insignificant shifts after 1.5 years of warming, 4.5 years of warming resulted in significant changes to the abundances of functional traits and the corresponding taxa relative to control plots (no warming), and microbial shifts differed qualitatively between the two soil depths. At 15 to 25 cm, increased abundances of carbohydrate utilization genes were observed that correlated with (increased) measured ecosystem carbon respiration. At the 45- to 55-cm layer, increased methanogenesis potential was observed, which corresponded with a 3-fold increase in abundance of a single archaeal clade of the Methanosarcinales order, increased annual thaw duration (45.3 vs. 79.3 days), and increased CH4 emissions. Collectively, these data demonstrate that the microbial responses to warming in tundra soil are rapid and markedly different between the 2 critical soil layers evaluated, and identify potential biomarkers for the corresponding microbial processes that could be important in modeling.


Assuntos
Dióxido de Carbono/química , Carbono/química , Microbiota/genética , Modelos Estatísticos , Microbiologia do Solo , Tundra , Alaska , Regiões Árticas , Carbono/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Mudança Climática/estatística & dados numéricos , Pergelissolo/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Temperatura
15.
mSystems ; 4(4)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213523

RESUMO

While functional gene arrays (FGAs) have greatly expanded our understanding of complex microbial systems, specificity, sensitivity, and quantitation challenges remain. We developed a new generation of FGA, GeoChip 5.0, using the Agilent platform. Two formats were created, a smaller format (GeoChip 5.0S), primarily covering carbon-, nitrogen-, sulfur-, and phosphorus-cycling genes and others providing ecological services, and a larger format (GeoChip 5.0M) containing the functional categories involved in biogeochemical cycling of C, N, S, and P and various metals, stress response, microbial defense, electron transport, plant growth promotion, virulence, gyrB, and fungus-, protozoan-, and virus-specific genes. GeoChip 5.0M contains 161,961 oligonucleotide probes covering >365,000 genes of 1,447 gene families from broad, functionally divergent taxonomic groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 genera), protists (219 genera), and viruses (167 genera), mainly phages. Computational and experimental evaluation indicated that designed probes were highly specific and could detect as little as 0.05 ng of pure culture DNAs within a background of 1 µg community DNA (equivalent to 0.005% of the population). Additionally, strong quantitative linear relationships were observed between signal intensity and amount of pure genomic (∼99% of probes detected; r > 0.9) or soil (∼97%; r > 0.9) DNAs. Application of the GeoChip to a contaminated groundwater microbial community indicated that environmental contaminants (primarily heavy metals) had significant impacts on the biodiversity of the communities. This is the most comprehensive FGA to date, capable of directly linking microbial genes/populations to ecosystem functions.IMPORTANCE The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities.

16.
Nat Ecol Evol ; 3(4): 612-619, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911147

RESUMO

Determining the temporal scaling of biodiversity, typically described as species-time relationships (STRs), in the face of global climate change is a central issue in ecology because it is fundamental to biodiversity preservation and ecosystem management. However, whether and how climate change affects microbial STRs remains unclear, mainly due to the scarcity of long-term experimental data. Here, we examine the STRs and phylogenetic-time relationships (PTRs) of soil bacteria and fungi in a long-term multifactorial global change experiment with warming (+3 °C), half precipitation (-50%), double precipitation (+100%) and clipping (annual plant biomass removal). Soil bacteria and fungi all exhibited strong STRs and PTRs across the 12 experimental conditions. Strikingly, warming accelerated the bacterial and fungal STR and PTR exponents (that is, the w values), yielding significantly (P < 0.001) higher temporal scaling rates. While the STRs and PTRs were significantly shifted by altered precipitation, clipping and their combinations, warming played the predominant role. In addition, comparison with the previous literature revealed that soil bacteria and fungi had considerably higher overall temporal scaling rates (w = 0.39-0.64) than those of plants and animals (w = 0.21-0.38). Our results on warming-enhanced temporal scaling of microbial biodiversity suggest that the strategies of soil biodiversity preservation and ecosystem management may need to be adjusted in a warmer world.


Assuntos
Biodiversidade , Mudança Climática , Pradaria , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/análise , DNA Fúngico/análise , Fungos/genética , Fungos/isolamento & purificação , RNA Ribossômico 16S/genética
17.
mBio ; 10(1)2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808694

RESUMO

Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N2 fixation is the major source of biologically available N, the soil N2-fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene (nifH) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly (P < 0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of α-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem.IMPORTANCE With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions.


Assuntos
Biota , Aquecimento Global , Fixação de Nitrogênio , Microbiologia do Solo , Alaska , Metagenômica , Análise em Microsséries , Oxirredutases/genética , Desenvolvimento Vegetal , Tundra
18.
Front Microbiol ; 9: 1790, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154760

RESUMO

As two central issues of global climate change, the continuous increase of both atmospheric CO2 concentrations and global temperature has profound effects on various terrestrial ecosystems. Microbial communities play pivotal roles in these ecosystems by responding to environmental changes through regulation of soil biogeochemical processes. However, little is known about the effect of elevated CO2 (eCO2) and global warming on soil microbial communities, especially in semiarid zones. We used a functional gene array (GeoChip 3.0) to measure the functional gene composition, structure, and metabolic potential of soil microbial communities under warming, eCO2, and eCO2 + warming conditions in a semiarid grassland. The results showed that the composition and structure of microbial communities was dramatically altered by multiple climate factors, including elevated CO2 and increased temperature. Key functional genes, those involved in carbon (C) degradation and fixation, methane metabolism, nitrogen (N) fixation, denitrification and N mineralization, were all stimulated under eCO2, while those genes involved in denitrification and ammonification were inhibited under warming alone. The interaction effects of eCO2 and warming on soil functional processes were similar to eCO2 alone, whereas some genes involved in recalcitrant C degradation showed no significant changes. In addition, canonical correspondence analysis and Mantel test results suggested that NO3-N and moisture significantly correlated with variations in microbial functional genes. Overall, this study revealed the possible feedback of soil microbial communities to multiple climate change factors by the suppression of N cycling under warming, and enhancement of C and N cycling processes under either eCO2 alone or in interaction with warming. These findings may enhance our understanding of semiarid grassland ecosystem responses to integrated factors of global climate change.

19.
Nat Commun ; 9(1): 3175, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093611

RESUMO

Increases in carbon (C) inputs to soil can replenish soil organic C (SOC) through various mechanisms. However, recent studies have suggested that the increased C input can also stimulate the decomposition of old SOC via priming. Whether the loss of old SOC by priming can override C replenishment has not been rigorously examined. Here we show, through data-model synthesis, that the magnitude of replenishment is greater than that of priming, resulting in a net increase in SOC by a mean of 32% of the added new C. The magnitude of the net increase in SOC is positively correlated with the nitrogen-to-C ratio of the added substrates. Additionally, model evaluation indicates that a two-pool interactive model is a parsimonious model to represent the SOC decomposition with priming and replenishment. Our findings suggest that increasing C input to soils likely promote SOC accumulation despite the enhanced decomposition of old C via priming.

20.
PeerJ ; 6: e5257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038871

RESUMO

For in-depth characterization of the microbiota associated with shrimp larvae, careful selection of DNA isolation procedure is paramount for avoiding biases introduced in community profiling. Four E.Z.N.A.™ DNA extraction kits, i.e., Bacterial, Mollusc, Stool, and Tissue DNA Kits, abbreviated as Ba, Mo, St, and Ti, respectively, were initially evaluated with zoea 2 (Z2) larvae of the Pacific white shrimp (Litopenaeus vannamei) by 16S amplicon sequencing on a Illumina MiSeq platform. Further characterization of additional larval samples, specifically nauplii 5 (N5), mysis 1 (M1), and postlarvae 1 (P1), was performed with Ba and St kits to examine the changing microbiota profile during shrimp hatchery period. The results from the Z2 samples showed that DNA yields from the four kits varied significantly (P < 0.05), whereas no significant differences were detected in the α-diversity metrics of the microbiota. By contrast, the St kit, with the lowest DNA yield and quality, successfully recovered DNA from Gram-positive and gut-associated bacterial groups, whereas the Ba kit, which showed maximal microbiota similarity with the Mo kit, manifested the best reproducibility. Notably, significant differences were observed in relative abundances of most dominant taxa when comparing results from the Ba and St kits on Z2, M1, and P1 samples. In addition, the bacterial community identified shifted markedly with larval development regardless of the DNA extraction kits. The DNA recovery biases arising from the larval microbiota could be due to different protocols for cell lysis and purification. Therefore, combined application of different DNA extraction methods may facilitate identification of some biologically important groups owing to their complementary effects. This approach should receive adequate attention for a thorough understanding of the larvae-associated microbiota of the penaeid shrimp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...