Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114282, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38795342

RESUMO

The suppressive effect of insulin on food intake has been documented for decades. However, whether insulin signals can encode a certain type of nutrients to regulate nutrient-specific feeding behavior remains elusive. Here, we show that in female Drosophila, a pair of dopaminergic neurons, tritocerebrum 1-dopaminergic neurons (T1-DANs), are directly activated by a protein-intake-induced insulin signal from insulin-producing cells (IPCs). Intriguingly, opto-activating IPCs elicits feeding inhibition for both protein and sugar, while silencing T1-DANs blocks this inhibition only for protein food. Elevating insulin signaling in T1-DANs or opto-activating these neurons is sufficient to mimic protein satiety. Furthermore, this signal is conveyed to local neurons of the protocerebral bridge (PB-LNs) and specifically suppresses protein intake. Therefore, our findings reveal that a brain-derived insulin signal encodes protein satiety and suppresses feeding behavior in a nutrient-specific manner, shedding light on the functional specificity of brain insulin signals in regulating behaviors.

2.
Curr Biol ; 34(10): 2186-2199.e3, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38723636

RESUMO

Animals exhibit rhythmic patterns of behavior that are shaped by an internal circadian clock and the external environment. Although light intensity varies across the day, there are particularly robust differences at twilight (dawn/dusk). These periods are also associated with major changes in behavioral states, such as the transition from arousal to sleep. However, the neural mechanisms by which time and environmental conditions promote these behavioral transitions are poorly defined. Here, we show that the E1 subclass of Drosophila evening clock neurons promotes the transition from arousal to sleep at dusk. We first demonstrate that the cell-autonomous clocks of E2 neurons primarily drive and adjust the phase of evening anticipation, the canonical behavior associated with "evening" clock neurons. We next show that conditionally silencing E1 neurons causes a significant delay in sleep onset after dusk. However, rather than simply promoting sleep, activating E1 neurons produces time- and light-dependent effects on behavior. Activation of E1 neurons has no effect early in the day but then triggers arousal before dusk and induces sleep after dusk. Strikingly, these activation-induced phenotypes depend on the presence of light during the day. Despite their influence on behavior around dusk, in vivo voltage imaging of E1 neurons reveals that their spiking rate and pattern do not significantly change throughout the day. Moreover, E1-specific clock ablation has no effect on arousal or sleep. Thus, we suggest that, rather than specifying "evening" time, E1 neurons act, in concert with other rhythmic neurons, to promote behavioral transitions at dusk.


Assuntos
Nível de Alerta , Relógios Circadianos , Ritmo Circadiano , Drosophila melanogaster , Neurônios , Sono , Animais , Sono/fisiologia , Nível de Alerta/fisiologia , Neurônios/fisiologia , Drosophila melanogaster/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
3.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485259

RESUMO

Sleep is regulated by homeostatic sleep drive and the circadian clock. While tremendous progress has been made in elucidating the molecular components of the core circadian oscillator, the output mechanisms by which this robust oscillator generates rhythmic sleep behavior remain poorly understood. At the cellular level, growing evidence suggests that subcircuits in the master circadian pacemaker suprachiasmatic nucleus (SCN) in mammals and in the clock network in Drosophila regulate distinct aspects of sleep. Thus, to identify novel molecules regulating the circadian timing of sleep, we conducted a large-scale screen of mouse SCN-enriched genes in Drosophila Here, we show that Tob (Transducer of ERB-B2) regulates the timing of sleep onset at night in female fruit flies. Knockdown of Tob pan-neuronally, either constitutively or conditionally, advances sleep onset at night. We show that Tob is specifically required in "evening neurons" (the LNds and the fifth s-LNv) of the clock network for proper timing of sleep onset. Tob levels cycle in a clock-dependent manner in these neurons. Silencing of these "evening" clock neurons results in an advanced sleep onset at night, similar to that seen with Tob knockdown. Finally, sharp intracellular recordings demonstrate that the amplitude and kinetics of LNd postsynaptic potentials (PSPs) cycle between day and night, and this cycling is attenuated with Tob knockdown in these cells. Our data suggest that Tob acts as a clock output molecule in a subset of clock neurons to potentiate their activity in the evening and enable the proper timing of sleep onset at night.


Assuntos
Ritmo Circadiano , Proteínas de Drosophila , Drosophila , Sono , Animais , Feminino , Animais Geneticamente Modificados , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios/fisiologia , Sono/fisiologia , Núcleo Supraquiasmático/fisiologia
4.
Int J Aging Hum Dev ; : 914150241231192, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347745

RESUMO

We sought to explore whether genetic risk for, and self-reported, short sleep are associated with biological aging and whether age and sex moderate these associations. Participants were a subset of individuals from the Baltimore Longitudinal Study of Aging who had complete data on self-reported sleep (n = 567) or genotype (n = 367). Outcomes included: Intrinsic Horvath age, Hannum age, PhenoAge, GrimAge, and DNAm-based estimates of plasminogen activator inhibitor-1 (PAI-1) and granulocyte count. Results demonstrated that polygenic risk for short sleep was positively associated with granulocyte count; compared to those reporting <6 hr sleep, those reporting >7 hr demonstrated faster PhenoAge and GrimAge acceleration and higher estimated PAI-1. Polygenic risk for short sleep and self-reported sleep duration interacted with age and sex in their associations with some of the outcomes. Findings highlight that polygenic risk for short sleep and self-reported long sleep is associated with variation in the epigenetic landscape and subsequently aging.

5.
Sleep ; 47(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38381532

RESUMO

STUDY OBJECTIVES: To compare sleep and 24-hour rest/activity rhythms (RARs) between cognitively normal older adults who are ß-amyloid-positive (Aß+) or Aß- and replicate a novel time-of-day-specific difference between these groups identified in a previous exploratory study. METHODS: We studied 82 cognitively normal participants from the Baltimore Longitudinal Study of Aging (aged 75.7 ±â€…8.5 years, 55% female, 76% white) with wrist actigraphy data and Aß+ versus Aß- status measured by [11C] Pittsburgh compound B positron emission tomography. RARs were calculated using epoch-level activity count data from actigraphy. We used novel, data-driven function-on-scalar regression analyses and standard RAR metrics to cross-sectionally compare RARs between 25 Aß+ and 57 Aß- participants. RESULTS: Compared to Aß- participants, Aß+ participants had higher mean activity from 1:00 p.m. to 3:30 p.m. when using less conservative pointwise confidence intervals (CIs) and from 1:30 p.m. to 2:30 p.m. using more conservative, simultaneous CIs. Furthermore, Aß+ participants had higher day-to-day variability in activity from 9:00 a.m. to 11:30 a.m. and lower variability from 1:30 p.m. to 4:00 p.m. and 7:30 p.m. to 10:30 p.m. according to pointwise CIs, and lower variability from 8:30 p.m. to 10:00 p.m. using simultaneous CIs. There were no Aß-related differences in standard sleep or RAR metrics. CONCLUSIONS: Findings suggest Aß+ older adults have higher, more stable day-to-day afternoon/evening activity than Aß- older adults, potentially reflecting circadian dysfunction. Studies are needed to replicate our findings and determine whether these or other time-of-day-specific RAR features have utility as markers of preclinical Aß deposition and if they predict clinical dementia and agitation in the afternoon/evening (i.e. "sundowning").


Assuntos
Actigrafia , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Humanos , Feminino , Masculino , Idoso , Peptídeos beta-Amiloides/metabolismo , Actigrafia/estatística & dados numéricos , Actigrafia/métodos , Tomografia por Emissão de Pósitrons/métodos , Idoso de 80 Anos ou mais , Estudos Longitudinais , Descanso/fisiologia , Compostos de Anilina , Sono/fisiologia , Biomarcadores/metabolismo , Biomarcadores/análise , Ritmo Circadiano/fisiologia , Tiazóis , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
6.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961473

RESUMO

Sleep is an evolutionarily conserved behavior, whose function is unknown. Here, we present a method for deep phenotyping of sleep in Drosophila, consisting of a high-resolution video imaging system, coupled with closed-loop laser perturbation to measure arousal threshold. To quantify sleep-associated microbehaviors, we trained a deep-learning network to annotate body parts in freely moving flies and developed a semi-supervised computational pipeline to classify behaviors. Quiescent flies exhibit a rich repertoire of microbehaviors, including proboscis pumping (PP) and haltere switches, which vary dynamically across the night. Using this system, we characterized the effects of optogenetically activating two putative sleep circuits. These data reveal that activating dFB neurons produces micromovements, inconsistent with sleep, while activating R5 neurons triggers PP followed by behavioral quiescence. Our findings suggest that sleep in Drosophila is polyphasic with different stages and set the stage for a rigorous analysis of sleep and other behaviors in this species.

7.
Nat Commun ; 14(1): 6381, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821426

RESUMO

Circadian clocks generate rhythms of arousal, but the underlying molecular and cellular mechanisms remain unclear. In Drosophila, the clock output molecule WIDE AWAKE (WAKE) labels rhythmic neural networks and cyclically regulates sleep and arousal. Here, we show, in a male mouse model, that mWAKE/ANKFN1 labels a subpopulation of dorsomedial hypothalamus (DMH) neurons involved in rhythmic arousal and acts in the DMH to reduce arousal at night. In vivo Ca2+ imaging reveals elevated DMHmWAKE activity during wakefulness and rapid eye movement (REM) sleep, while patch-clamp recordings show that DMHmWAKE neurons fire more frequently at night. Chemogenetic manipulations demonstrate that DMHmWAKE neurons are necessary and sufficient for arousal. Single-cell profiling coupled with optogenetic activation experiments suggest that GABAergic DMHmWAKE neurons promote arousal. Surprisingly, our data suggest that mWAKE acts as a clock-dependent brake on arousal during the night, when mice are normally active. mWAKE levels peak at night under clock control, and loss of mWAKE leads to hyperarousal and greater DMHmWAKE neuronal excitability specifically at night. These results suggest that the clock does not solely promote arousal during an animal's active period, but instead uses opposing processes to produce appropriate levels of arousal in a time-dependent manner.


Assuntos
Relógios Circadianos , Sono , Camundongos , Animais , Masculino , Nível de Alerta/fisiologia , Neurônios/fisiologia , Hipotálamo/fisiologia , Ritmo Circadiano/fisiologia
8.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693540

RESUMO

Animals exhibit rhythmic patterns of behavior that are shaped by an internal circadian clock and the external environment. While light intensity varies across the day, there are particularly robust differences at twilight (dawn/dusk). These periods are also associated with major changes in behavioral states, such as the transition from arousal to sleep. However, the neural mechanisms by which time and environmental conditions promote these behavioral transitions are poorly defined. Here, we show that the E1 subclass of Drosophila evening clock neurons promotes the transition from arousal to sleep at dusk. We first demonstrate that the cell-autonomous clocks of E2 neurons alone are required to drive and adjust the phase of evening anticipation, the canonical behavior associated with "evening" clock neurons. We next show that conditionally silencing E1 neurons causes a significant delay in sleep onset after dusk. However, rather than simply promoting sleep, activating E1 neurons produces time- and light- dependent effects on behavior. Activation of E1 neurons has no effect early in the day, but then triggers arousal before dusk and induces sleep after dusk. Strikingly, these phenotypes critically depend on the presence of light during the day. Despite their influence on behavior around dusk, in vivo voltage imaging of E1 neurons reveals that their spiking rate does not vary between dawn and dusk. Moreover, E1-specific clock ablation has no effect on arousal or sleep. Thus, we suggest that, rather than specifying "evening" time, E1 neurons act, in concert with other rhythmic neurons, to promote behavioral transitions at dusk.

9.
Adv Biol (Weinh) ; 7(11): e2300138, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37423973

RESUMO

Little is known about links of circadian rhythm alterations with neuropsychiatric symptoms and cognition in memory impaired older adults. Associations of actigraphic rest/activity rhythms (RAR) with depressive symptoms and cognition are examined using function-on-scalar regression (FOSR). Forty-four older adults with memory impairment (mean: 76.84 ± 8.15 years; 40.9% female) completed 6.37 ± 0.93 days of actigraphy, the Beck depression inventory-II (BDI-II), mini-mental state examination (MMSE) and consortium to establish a registry for Alzheimer's disease (CERAD) delayed word recall. FOSR models with BDI-II, MMSE, or CERAD as individual predictors adjusted for demographics (Models A1-A3) and all three predictors and demographics (Model B). In Model B, higher BDI-II scores are associated with greater activity from 12:00-11:50 a.m., 2:10-5:50 p.m., 8:40-9:40 p.m., 11:20-12:00 a.m., higher CERAD scores with greater activity from 9:20-10:00 p.m., and higher MMSE scores with greater activity from 5:50-10:50 a.m. and 12:40-5:00 p.m. Greater depressive symptomatology is associated with greater activity in midafternoon, evening, and overnight into midday; better delayed recall with greater late evening activity; and higher global cognitive performance with greater morning and afternoon activity (Model B). Time-of-day specific RAR alterations may affect mood and cognitive performance in this population.


Assuntos
Doença de Alzheimer , Cognição , Humanos , Feminino , Masculino , Idoso , Testes Neuropsicológicos , Ritmo Circadiano , Transtornos da Memória/diagnóstico
10.
J Gerontol A Biol Sci Med Sci ; 78(3): 454-462, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36082967

RESUMO

BACKGROUND: This study examined associations of actigraphy-estimated sleep parameters with concurrent and future cognitive performance in adults aged ≥ 50 years and explored interactions with race. METHODS: Participants were 435 cognitively normal adults in the Baltimore Longitudinal Study of Aging who completed wrist actigraphy at baseline (mean = 6.6 nights) and underwent longitudinal testing of memory, attention, executive function, language, and visuospatial ability. On average, participants with follow-up data were followed for 3.1 years. Primary predictors were baseline mean total sleep time, sleep onset latency, sleep efficiency (SE), and wake after sleep onset (WASO). Fully adjusted linear mixed-effects models included demographics, baseline health-related characteristics, smoking status, sleep medication use, APOE e4 carrier status, and interactions of each covariate with time. RESULTS: In adjusted models, higher SE (per 10%; B = 0.11, p = .012) and lower WASO (per 30 minutes; B = -0.12, p = .007) were associated with better memory cross-sectionally. In contrast, higher SE was associated with greater visuospatial ability decline longitudinally (B = -0.02, p = .004). Greater WASO was associated with poorer visuospatial ability cross-sectionally (B = -0.09, p = .019) but slower declines in visuospatial abilities longitudinally (B = 0.02, p = .002). Several sleep-cognition cross-sectional and longitudinal associations were stronger in, or limited to, Black participants (compared to White participants). CONCLUSIONS: This study suggests cross-sectional sleep-cognition associations differ across distinct objective sleep parameters and cognitive domains. This study also provides preliminary evidence for racial differences across some sleep-cognition relationships. Unexpected directions of associations between baseline sleep and cognitive performance over time may be attributable to the significant proportion of participants without follow-up data and require further investigation.


Assuntos
Cognição , Sono , Humanos , Estudos Longitudinais , Estudos Transversais , Testes Neuropsicológicos , Actigrafia
11.
Curr Biol ; 32(22): 4957-4966.e5, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36240772

RESUMO

How the homeostatic drive for sleep accumulates over time and is released remains poorly understood. In Drosophila, we previously identified the R5 ellipsoid body (EB) neurons as putative sleep drive neurons1 and recently described a mechanism by which astrocytes signal to these cells to convey sleep need.2 Here, we examine the mechanisms acting downstream of the R5 neurons to promote sleep. EM connectome data demonstrate that R5 neurons project to EPG neurons.3 Broad thermogenetic activation of EPG neurons promotes sleep, whereas inhibiting these cells reduces homeostatic sleep rebound. Perforated patch-clamp recordings reveal that EPG neurons exhibit elevated spontaneous firing following sleep deprivation, which likely depends on an increase in extrinsic excitatory inputs. Our data suggest that cholinergic R5 neurons participate in the homeostatic regulation of sleep, and epistasis experiments indicate that the R5 neurons act upstream of EPG neurons to promote sleep. Finally, we show that the physical and functional connectivity between the R5 and EPG neurons increases with greater sleep need. Importantly, dual patch-clamp recordings demonstrate that activating R5 neurons induces cholinergic-dependent excitatory postsynaptic responses in EPG neurons. Moreover, sleep loss triggers an increase in the amplitude of these responses, as well as in the proportion of EPG neurons that respond. Together, our data support a model whereby sleep drive strengthens the functional connectivity between R5 and EPG neurons, triggering sleep when a sufficient number of EPG neurons are activated. This process could enable the proper timing of the accumulation and release of sleep drive.


Assuntos
Privação do Sono , Sono , Animais , Sono/fisiologia , Homeostase/fisiologia , Neurônios Colinérgicos , Drosophila , Colinérgicos
12.
Front Neurosci ; 16: 952204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312032

RESUMO

Objectives: Wrist actigraphs (accelerometers) can record motor activity over multiple days and nights. The resulting data can be used to quantify 24-h activity profiles, known as circadian rest-activity rhythms (CRARs). Actigraphic CRARs have been tied to cognitive performance and decline in older adults; however, little is known about links between CRARs and performance or change in specific cognitive domains, or how individual differences may influence these associations. We investigated associations of actigraphic CRARs with cognitive performance and change in middle-aged and older adults, and explored whether age, sex/gender, race, and apolipoprotein E (APOE) e4 carrier status moderated these associations. Materials and methods: Participants (N = 422; 47% male) were cognitively healthy adults (i.e., without mild cognitive impairment or dementia) at baseline aged ≥ 50 years from the Baltimore Longitudinal Study of Aging who completed 5.6 ± 0.89 nights of wrist actigraphy and tests of memory, executive function, attention, language, and visuospatial ability at the same visit the actigraph was issued; 292 participants had repeat cognitive testing 3.12 (1.58) years later. Predictors included indices of rhythm strength [i.e., amplitude; relative amplitude (RA); interdaily stability (IS); mesor], delayed timing of the rhythm peak [i.e., later acrophase; midpoint of an individual's least active 5 h (L5 time); midpoint of an individual's most active 10 h (M10 time)], and fragmentation [i.e., intradaily variability (IV)]. Results: In main effects, later L5 time was cross sectionally associated with poorer memory, and greater IS predicted slower longitudinal memory decline. Associations of CRARs with cognition differed as a function of age, sex/gender, race, and APOE e4 carrier status. Conclusion: Among middle-aged and older adults, delayed circadian phase is associated with poorer memory performance, and greater day-to-day rhythm stability is associated with slower declines in memory. Significant interactions suggest that CRARs are generally more strongly associated with cognitive performance and rate of cognitive decline among women, Black adults, older individuals, and APOE e4 carriers. Replication in independent samples is needed.

13.
Sleep Adv ; 2(1): zpab015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34661109

RESUMO

STUDY OBJECTIVES: To examine in a subsample at the screening phase of a clinical trial of a ß-amyloid (Aß) antibody whether disturbed sleep and altered 24-hour rest/activity rhythms (RARs) may serve as markers of preclinical Alzheimer's disease (AD). METHODS: Overall, 26 Aß-positive (Aß+) and 33 Aß-negative (Aß-) cognitively unimpaired participants (mean age = 71.3 ± 4.6 years, 59% women) from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) and the Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) studies, respectively, wore actigraphs for 5.66 ± 0.88 24-hour periods. We computed standard sleep parameters, standard RAR metrics (mean estimating statistic of rhythm, amplitude, acrophase, interdaily stability, intradaily variability, relative amplitude), and performed a novel RAR analysis (function-on-scalar regression [FOSR]). RESULTS: We were unable to detect any differences between Aß+ and Aß- participants in standard sleep parameters or RAR metrics with our sample size. When we used novel FOSR methods, however, Aß+ participants had lower activity levels than Aß- participants in the late night through early morning (11:30 pm to 3:00 am), and higher levels in the early morning (4:30 am to 8:30 am) and from midday through late afternoon (12:30 pm to 5:30 pm; all p < .05). Aß+ participants also had higher variability in activity across days from 9:30 pm to 1:00 am and 4:30 am to 8:30 am, and lower variability from 2:30 am to 3:30 am (all p < .05). CONCLUSIONS: Although we found no association of preclinical AD with standard actigraphic sleep or RAR metrics, a novel data-driven analytic method identified temporally "local" RAR alterations in preclinical AD.

14.
Nat Commun ; 12(1): 3175, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039988

RESUMO

Antagonistic pleiotropy is a foundational theory that predicts aging-related diseases are the result of evolved genetic traits conferring advantages early in life. Here we examine CaMKII, a pluripotent signaling molecule that contributes to common aging-related diseases, and find that its activation by reactive oxygen species (ROS) was acquired more than half-a-billion years ago along the vertebrate stem lineage. Functional experiments using genetically engineered mice and flies reveal ancestral vertebrates were poised to benefit from the union of ROS and CaMKII, which conferred physiological advantage by allowing ROS to increase intracellular Ca2+ and activate transcriptional programs important for exercise and immunity. Enhanced sensitivity to the adverse effects of ROS in diseases and aging is thus a trade-off for positive traits that facilitated the early and continued evolutionary success of vertebrates.


Assuntos
Envelhecimento/fisiologia , Evolução Biológica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vertebrados/fisiologia , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Edição de Genes , Técnicas de Introdução de Genes , Masculino , Camundongos , Modelos Animais , Oxirredução , Filogenia , Aptidão Física/fisiologia , Mutação Puntual
15.
Sleep ; 44(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-33791794

RESUMO

STUDY OBJECTIVE: To examine associations of personality dimensions and facets with insomnia symptoms in a community sample of older adults. METHODS: We studied 1049 participants aged 60-97 years in the Baltimore Longitudinal Study of Aging. Personality was assessed by the Revised NEO Personality Inventory (NEO-PI-R), and insomnia symptom severity was measured by the Women's Health Initiative Insomnia Rating Scale (WHIIRS). RESULTS: Adjusting for demographic characteristics, higher neuroticism, lower conscientiousness, and lower extraversion were associated with greater insomnia symptom severity. These associations remained significant for neuroticism and conscientiousness when further adjusting for depressive symptoms and comorbidities. Higher scores on neuroticism facets Anxiety, Angry Hostility, and Depression, and lower scores on conscientiousness facets Competence, Order, and Achievement Striving and on agreeableness facet Altruism were associated with greater insomnia symptom severity in fully adjusted models. Results were similar among cognitively normal older adults (N = 966), except higher scores on extraversion facets Warmth and Assertiveness associated with lower insomnia symptom severity, and agreeableness facet Altruism was unassociated. CONCLUSION: Among older adults, insomnia symptoms appear partially related to personality, with persons higher in neuroticism experiencing greater insomnia symptom severity, and those higher in conscientiousness experiencing lower insomnia symptom severity. Exploring facets of the Big-Five dimensions may provide additional insight regarding the etiology and resolution of sleep disturbance, and some of these associations may differ based on cognitive status. Future studies should investigate the hypothesis that sleep impairment mediates part of the association between specific personality traits and health-related outcomes.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Idoso , Envelhecimento , Baltimore/epidemiologia , Feminino , Humanos , Estudos Longitudinais , Personalidade , Inventário de Personalidade , Distúrbios do Início e da Manutenção do Sono/epidemiologia
16.
J Comp Neurol ; 529(8): 1954-1987, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33140455

RESUMO

Structure-function analyses of the mammalian brain have historically relied on anatomically-based approaches. In these investigations, physical, chemical, or electrolytic lesions of anatomical structures are applied, and the resulting behavioral or physiological responses assayed. An alternative approach is to focus on the expression pattern of a molecule whose function has been characterized and then use genetic intersectional methods to optogenetically or chemogenetically manipulate distinct circuits. We previously identified WIDE AWAKE (WAKE) in Drosophila, a clock output molecule that mediates the temporal regulation of sleep onset and sleep maintenance. More recently, we have studied the mouse homolog, mWAKE/ANKFN1, and our data suggest that its basic role in the circadian regulation of arousal is conserved. Here, we perform a systematic analysis of the expression pattern of mWake mRNA, protein, and cells throughout the adult mouse brain. We find that mWAKE labels neurons in a restricted, but distributed manner, in multiple regions of the hypothalamus (including the suprachiasmatic nucleus, dorsomedial hypothalamus, and tuberomammillary nucleus region), the limbic system, sensory processing nuclei, and additional specific brainstem, subcortical, and cortical areas. Interestingly, mWAKE is also observed in non-neuronal ependymal cells. In addition, to describe the molecular identities and clustering of mWake+ cells, we provide detailed analyses of single cell RNA sequencing data from the hypothalamus, a region with particularly significant mWAKE expression. These findings lay the groundwork for future studies into the potential role of mWAKE+ cells in the rhythmic control of diverse behaviors and physiological processes.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Curr Biol ; 31(1): 150-162.e7, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33186550

RESUMO

Sleep is under homeostatic control, whereby increasing wakefulness generates sleep need and triggers sleep drive. However, the molecular and cellular pathways by which sleep need is encoded are poorly understood. In addition, the mechanisms underlying both how and when sleep need is transformed to sleep drive are unknown. Here, using ex vivo and in vivo imaging, we show in Drosophila that astroglial Ca2+ signaling increases with sleep need. We demonstrate that this signaling is dependent on a specific L-type Ca2+ channel and is necessary for homeostatic sleep rebound. Thermogenetically increasing Ca2+ in astrocytes induces persistent sleep behavior, and we exploit this phenotype to conduct a genetic screen for genes required for the homeostatic regulation of sleep. From this large-scale screen, we identify TyrRII, a monoaminergic receptor required in astrocytes for sleep homeostasis. TyrRII levels rise following sleep deprivation in a Ca2+-dependent manner, promoting further increases in astrocytic Ca2+ and resulting in a positive-feedback loop. Moreover, our findings suggest that astrocytes then transmit this sleep need to a sleep drive circuit by upregulating and releasing the interleukin-1 analog Spätzle, which then acts on Toll receptors on R5 neurons. These findings define astroglial Ca2+ signaling mechanisms encoding sleep need and reveal dynamic properties of the sleep homeostatic control system.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Sono/fisiologia , Animais , Animais Geneticamente Modificados , Cálcio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retroalimentação Fisiológica , Feminino , Técnicas de Silenciamento de Genes , Microscopia Intravital , Canais Iônicos/genética , Canais Iônicos/metabolismo , Neurônios/metabolismo , Receptores de Amina Biogênica/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
18.
J Clin Invest ; 130(9): 4663-4678, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749237

RESUMO

Oxidant stress can contribute to health and disease. Here we show that invertebrates and vertebrates share a common stereospecific redox pathway that protects against pathological responses to stress, at the cost of reduced physiological performance, by constraining Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity. MICAL1, a methionine monooxygenase thought to exclusively target actin, and MSRB, a methionine reductase, control the stereospecific redox status of M308, a highly conserved residue in the calmodulin-binding (CaM-binding) domain of CaMKII. Oxidized or mutant M308 (M308V) decreased CaM binding and CaMKII activity, while absence of MICAL1 in mice caused cardiac arrhythmias and premature death due to CaMKII hyperactivation. Mimicking the effects of M308 oxidation decreased fight-or-flight responses in mice, strikingly impaired heart function in Drosophila melanogaster, and caused disease protection in human induced pluripotent stem cell-derived cardiomyocytes with catecholaminergic polymorphic ventricular tachycardia, a CaMKII-sensitive genetic arrhythmia syndrome. Our studies identify a stereospecific redox pathway that regulates cardiac physiological and pathological responses to stress across species.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxigenases de Função Mista/metabolismo , Mutação de Sentido Incorreto , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Taquicardia Ventricular/enzimologia , Substituição de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Oxigenases de Função Mista/genética , Miocárdio/patologia , Miócitos Cardíacos/patologia , Oxirredução , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia
19.
Curr Opin Neurobiol ; 64: 135-142, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32563845

RESUMO

Animals engage in motivated behaviors, such as feeding and mating behaviors, to ensure their own survival and the survival of their species. However, the neural circuits mediating the generation and persistence of these motivational drives remain poorly understood. Here we review recent studies on the circuit mechanisms underlying motivational states in Drosophila, with a focus on feeding, courtship, and aggression. These studies shed light on the molecular and cellular mechanisms by, which key drive neurons receive relevant input signals, integrate information, and decide on a specific behavioral output. We also discuss conceptual models for integrating these circuit mechanisms, distinguishing between those for homeostatically-regulated versus non-homeostatically-regulated motivated behaviors. We suggest that the ability to trigger persistence of a motivated behavior may be a feature of integrator or apex/command neurons.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Corte , Drosophila melanogaster , Neurônios , Comportamento Sexual Animal
20.
Nat Commun ; 11(1): 2679, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471994

RESUMO

The cation channel transient receptor potential vanilloid 4 (TRPV4) is one of the few identified ion channels that can directly cause inherited neurodegeneration syndromes, but the molecular mechanisms are unknown. Here, we show that in vivo expression of a neuropathy-causing TRPV4 mutant (TRPV4R269C) causes dose-dependent neuronal dysfunction and axonal degeneration, which are rescued by genetic or pharmacological blockade of TRPV4 channel activity. TRPV4R269C triggers increased intracellular Ca2+ through a Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated mechanism, and CaMKII inhibition prevents both increased intracellular Ca2+ and neurotoxicity in Drosophila and cultured primary mouse neurons. Importantly, TRPV4 activity impairs axonal mitochondrial transport, and TRPV4-mediated neurotoxicity is modulated by the Ca2+-binding mitochondrial GTPase Miro. Our data highlight an integral role for CaMKII in neuronal TRPV4-associated Ca2+ responses, the importance of tightly regulated Ca2+ dynamics for mitochondrial axonal transport, and the therapeutic promise of TRPV4 antagonists for patients with TRPV4-related neurodegenerative diseases.


Assuntos
Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Drosophila melanogaster/metabolismo , Doenças Neurodegenerativas/genética , Canais de Cátion TRPV/genética , Animais , Animais Geneticamente Modificados , Axônios/patologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/patologia , Asas de Animais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...