Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1845-1855, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38914495

RESUMO

α-arbutin has important applications in cosmetics and medicine. However, the extraction yield from plant tissues is relatively low, which restricts its application value. In this study, we investigated the synthesis of α-arbutin using maltodextrin as the donor and hydroquinone as the acceptor, using a cyclodextrin glucosyltransferase (CGTase) from Anaerobranca gottschalkii. We performed site-saturated and site-directed mutagenesis on AgCGTase. The activity of the variant AgCGTase-F235G-N166H was 3.48 times higher than that of the wild type. Moreover, we achieved a conversion rate of 63% by optimizing the reaction pH, temperature, and hydroquinone addition amount. Overall, this study successfully constructed a strain with improved conversion rate for the synthetic production of α-arbutin and hydroquinone. These findings have significant implications for reducing the industrial production cost of α-arbutin and enhancing the conversion rate of the product.


Assuntos
Arbutina , Glucosiltransferases , Hidroquinonas , Mutagênese Sítio-Dirigida , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Arbutina/biossíntese , Hidroquinonas/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/metabolismo
2.
J Biotechnol ; 389: 86-93, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38718874

RESUMO

l-Carnosine (l-Car), an endogenous dipeptide presents in muscle and brain tissues of various vertebrates, has a wide range of application values. The enzymatic preparation of l-Car is a promising synthetic method because it avoids the protection and deprotection steps. In the present study, a dipeptidase gene (CpPepD) from Clostridium perfringens with high l-Car synthetic activity was cloned and characterized. In an effort to improve the performance of this enzyme, we carried out site saturation mutagenesis using CpPepD as the template. By the o-phthalaldehyde (OPA)-derived high throughput screening method, mutant A171S was obtained with 2.2-fold enhanced synthetic activity. The enzymatic properties of CpPepD and mutant A171S were investigated. Under the optimized conditions, 63.94 mM (14.46 g L-1) or 67.02 mM (15.16 g L-1) l-Car was produced at the substrate concentrations of 6 M ß-Ala and 0.2 M l-His using wild-type or mutant A171S enzyme, respectively. Although the mutation enhanced the enzyme activity, the reaction equilibrium was barely affected.


Assuntos
Carnosina , Clostridium perfringens , Dipeptidases , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Carnosina/metabolismo , Carnosina/química , Carnosina/análogos & derivados , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptidases/química , Engenharia de Proteínas/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Mutagênese Sítio-Dirigida
3.
Org Lett ; 26(21): 4463-4468, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38747552

RESUMO

(S)-1-(4-Methoxybenzyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline ((S)-1-(4-methoxybenzyl)-OHIQ) is the key intermediate of the nonopioid antitussive dextromethorphan. In this study, (S)-IR61-V69Y/P123A/W179G/F182I/L212V (M4) was identified with a 766-fold improvement in catalytic efficiency compared with wide-type IR61 through enzyme engineering. M4 could completely convert 200 mM of 1-(4-methoxybenzyl)-3,4,5,6,7,8-hexahydroisoquinoline into (S)-1-(4-methoxybenzyl)-OHIQ in 77% isolated yield, with >99% enantiomeric excess and a high space-time yield of 542 g L-1 day-1, demonstrating a great potential for the synthesis of dextromethorphan intermediate in industrial applications.


Assuntos
Dextrometorfano , Dextrometorfano/química , Dextrometorfano/síntese química , Estrutura Molecular , Oxirredutases/metabolismo , Oxirredutases/química , Iminas/química , Estereoisomerismo , Antitussígenos/química , Antitussígenos/síntese química , Engenharia de Proteínas
4.
Crit Rev Biotechnol ; : 1-20, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566472

RESUMO

ß-Hydroxy-α-amino acids (ß-HAAs) have extensive applications in the pharmaceutical, chemical synthesis, and food industries. The development of synthetic methodologies aimed at producing optically pure ß-HAAs has been driven by practical applications. Among the various synthetic methods, biocatalytic asymmetric synthesis is considered a sustainable approach due to its capacity to generate two stereogenic centers from simple prochiral precursors in a single step. Therefore, extensive efforts have been made in recent years to search for effective enzymes which enable such biotransformation. This review provides an overview on the discovery and engineering of C-C bond formation enzymes for the biocatalytic synthesis of ß-HAAs. We highlight examples where the use of threonine aldolases, threonine transaldolases, serine hydroxymethyltransferases, α-methylserine aldolases, α-methylserine hydroxymethyltransferases, and engineered alanine racemases facilitated the synthesis of ß-HAAs. Additionally, we discuss the potential future advancements and persistent obstacles in the enzymatic synthesis of ß-HAAs.

5.
JACS Au ; 4(4): 1356-1364, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665665

RESUMO

Steroidal pharmaceuticals with a 10α-methyl group or without the methyl group at C10-position are important medicines, but their synthesis is quite challenging, due to that the natural steroidal starting materials usually have a 10ß-methyl group which is difficult to be inverted to 10α-methyl group. In this study, 3-((1R,3aS,4S,7aR)-1-((S)-1-hydroxypropan-2-yl)-7a-methyl-5-oxooctahydro-1H-inden-4-yl) propanoic acid (HIP-IPA, 2e) was demonstrated as a valuable intermediate for the synthesis of this kind of active pharmaceutical ingredients (APIs) with a side chain at C17-position. Knockout of a ß-hydroxyacyl-CoA dehydrogenase gene and introduction of a sterol aldolase gene into the genetically modified strains of Mycobacterium fortuitum (ATCC 6841) resulted in strains N13Δhsd4AΩthl and N33Δhsd4AΩthl, respectively. Both strains transformed phytosterols into 2e. Compound 2e was produced in 62% isolated yield (25 g) using strain N13Δhsd4AΩthl, and further converted to (3S,3aS,9aS,9bS)-3-acetyl-3a,6-dimethyl-1,2,3,3a,4,5,8,9,9a,9b-decahydro-7H-cyclopenta[a]naphthalen-7-one, which is the key intermediate for the synthesis of dydrogesterone. This study not only overcomes a challenging synthetic problem by enabling an efficient synthesis of dydrogesterone-like steroidal APIs from phytosterols, the well-recognized cheap and readily available biobased raw materials, but also provides insights for redesigning the metabolic pathway of phytosterols to produce other new compounds of relevance to the steroidal pharmaceutical industry.

6.
Org Lett ; 25(47): 8469-8473, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972311

RESUMO

By reshaping the substrate-binding pocket of ß-amino acid dehydrogenase (ß-AADH), some variants were obtained with up to 2560-fold enhanced activity toward the model substrates (S)-ß-homophenylalanine and (R)-ß-phenylalanine. A few aromatic ß-amino acids were prepared with >99% ee and high isolated yields via either kinetic resolution of racemates or reductive amination of the corresponding ß-keto acids. This work expands the catalytic capability of ß-AADHs and highlights their practical application in the synthesis of pharmaceutically relevant ß-amino acids.


Assuntos
Aminoácido Oxirredutases , Aminoácidos Aromáticos , Aminoácidos Aromáticos/metabolismo , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Aminoácidos/metabolismo , Aminação , Cetoácidos , Especificidade por Substrato
7.
JACS Au ; 3(11): 3005-3013, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034963

RESUMO

Photocatalysis offers tremendous opportunities for enzymes to access new functions. Herein, we described a redox-neutral photocatalysis/enzymatic catalysis system for the asymmetric synthesis of chiral 1,2-amino alcohols via decarboxylative radical C-C coupling of N-arylglycines and aldehydes by combining an organic photocatalyst, eosin Y, and carbonyl reductase RasADH. Notably, this protocol avoids using any sacrificial reductants. A possible reaction mechanism proposed is that the transformation proceeds through sequential photoinduced decarboxylative radical addition to an aldehyde and a photoenzymatic deracemization pathway. This redox-neutral photoredox/enzymatic strategy is promising not only for effective synthesis of a series of chiral amino alcohols in a green and sustainable manner but also for the design of other novel C-C radical coupling transformations for the synthesis of bioactive molecules.

8.
J Org Chem ; 88(16): 11905-11912, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37526991

RESUMO

2,2-Disubstituted-3-hydroxycyclopentanones are important chiral intermediates for natural products and pharmaceuticals. Through semirational engineering of a thermostable carbonyl reductase CBCR from Cupriavidus sp. BIS7, a mutant L91C/F93I was obtained. Mutant L91C/F93I showed 4- to 36-fold enhanced activities toward 2-methyl-2-benzyl-1,3-cyclopentanedione and its analogues, affording the (2R,3R)-stereoisomers with >99% ee and >99% de. Enzyme-substrate docking studies were performed to reveal the molecular basis for the activity and stereoselectivity improvements.


Assuntos
Oxirredutases do Álcool , Estereoisomerismo
9.
Chem Sci ; 14(16): 4265-4272, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37123194

RESUMO

In this study, engineered imine reductases (IREDs) of IRED M5, originally from Actinoalloteichus hymeniacidonis, were obtained through structure-guided semi-rational design. By focusing on mutagenesis of the residues that directly interact with the ketone donor moiety, we identified two residues W234 and F260, playing essential roles in enhancing and reversing the stereoselectivity, respectively. Moreover, two completely enantio-complementary variants S241L/F260N (R-selectivity up to 99%) and I149D/W234I (S-selectivity up to 99%) were achieved. Both variants showed excellent stereoselectivity toward the tested substrates, offering valuable biocatalysts for synthesizing pyrrolidinamines. Its application was demonstrated in a short synthesis of the key intermediates of potential drug molecules leniolisib and JAK1 inhibitor 4, from cheap and commercially available pro-chiral N-Boc-piperidone 1 (2 and 3 steps, respectively).

10.
Org Lett ; 25(14): 2438-2443, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37010125

RESUMO

Two enantiocomplementary imine reductases (IREDs) with high enantioselectivity were identified with catalytic activity toward the reduction of 1-heteroaryl dihydroisoquinolines through a screening of wild-type IREDs and enzyme engineering. Furthermore, (R)-IR141-L172M/Y267F and (S)-IR40 were applied to access a series of different 1-heteroaryl tetrahydroisoquinolines with high to excellent ee values (82 to >99%) and isolated yields (80 to 94%), thereby providing an effective method to construct this class of pharmaceutically important alkaloids, such as the intermediate of kinase inhibitor TAK-981.


Assuntos
Oxirredutases , Tetra-Hidroisoquinolinas , Biocatálise , Iminas , Oxirredutases/metabolismo , Estereoisomerismo
11.
Org Lett ; 24(36): 6531-6536, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36066397

RESUMO

While chiral fused-ring tetrahydroisoquinoline (THIQ) and tetrahydro-ß-carboline (THßC) scaffolds have attracted considerable interest due to their wide spectrum of biological activities, the synthesis of optically pure chiral fused-ring THIQs and THßCs remains a challenging task. Herein, a group of active imine reductases were identified to convert the imine precursors into the corresponding enantiocomplementary fused-ring THIQs and THßCs with high enantioselectivity and conversion, establishing an efficient and green chemoenzymatic approach to fused-ring alkaloids from 2-arylethylamines.


Assuntos
Alcaloides , Tetra-Hidroisoquinolinas , Carbolinas , Iminas , Oxirredutases
12.
Microorganisms ; 10(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35336084

RESUMO

3-Ketosteroid-Δ1-dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ1-dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, nine putative kstD genes from different origins were selected and overexpressed in Escherichia coli BL21(DE3). These recombinant enzymes catalyzed the Δ1-desaturation of a variety of steroidal compounds. Among them, the KstD from Propionibacterium sp. (PrKstD) displayed the highest specific activity and broad substrate spectrum. The detailed catalytic characterization of PrKstD showed that it can convert a wide range of 3-ketosteroid compounds with diverse substituents, ranging from substituents at the C9, C10, C11 and C17 position through substrates without C4-C5 double bond, to previously inactive C6-substituted ones such as 11ß,17-dihydroxy-6α-methyl-pregn-4-ene-3,20-dione. Reaction conditions were optimized for the biotransformation of hydrocortisone in terms of pH, temperature, co-solvent and electron acceptor. By using 50 g/L wet resting E. coli cells harboring PrKstD enzyme, the conversion of hydrocortisone was about 92.5% within 6 h at the substrate concentration of 80 g/L, much higher than the previously reported results, demonstrating the application potential of this new KstD.

13.
Angew Chem Int Ed Engl ; 61(17): e202116344, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35166000

RESUMO

The chiral N-substituted 1,2-amino alcohol motif is found in many natural and synthetic bioactive compounds. In this study, enzymatic asymmetric reductive amination of α-hydroxymethyl ketones with enantiocomplementary imine reductases (IREDs) enabled the synthesis of chiral N-substituted 1,2-amino alcohols with excellent ee values (91-99 %) in moderate to high yields (41-84 %). Furthermore, a one-pot, two-step enzymatic process involving benzaldehyde lyase-catalyzed hydroxymethylation of aldehydes and subsequent asymmetric reductive amination was developed, offering an environmentally friendly and economical way to produce N-substituted 1,2-amino alcohols from readily available simple aldehydes and amines. This methodology was then applied to rapidly access a key synthetic intermediate of anti-malaria and cytotoxic tetrahydroquinoline alkaloids.


Assuntos
Aminas , Amino Álcoois , Aldeídos , Aminação , Estereoisomerismo
14.
ChemSusChem ; 15(9): e202102399, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35089653

RESUMO

Steroids have been widely used in birth-control, prevention, and treatment of various diseases, representing the largest sector after antibiotics in the global pharmaceutical market. The steroidal active pharmaceutical ingredients (APIs) have been produced via partial synthetic processes first mainly from sapogenins, which was converted into 16-dehydropregnenolone by the famous "Marker Degradation". Traditional mutation and screening, and process engineering have resulted in the industrial production of 4-androstene-3,17-dione (AD), androst-1,4-diene-3,17-dione (ADD), 9α-hydroxy-androsta-4-ene-3,17-dione (9α-OH-AD), and so on, which serve as the key intermediates for the synthesis of steroidal APIs. Recently, genetic and metabolic engineering have generated highly efficient microbial strains for the production of these precursors, leading to the replacement of sapogenins with phytosterols as the starting materials. Further advances in synthetic biology hold promise in the design and construction of microbial cell factories for the industrial production of steroidal intermediates and/or APIs from simple carbon sources such as glucose. Integration of biotransformation into the synthesis of steroidal APIs can greatly reduce the number of reaction steps, achieve lower waste discharge and higher production efficiency, thus enabling a greener steroidal pharmaceutical industry.


Assuntos
Fitosteróis , Sapogeninas , Biotransformação , Preparações Farmacêuticas , Fitosteróis/metabolismo , Esteroides/metabolismo
15.
Sheng Wu Gong Cheng Xue Bao ; 38(11): 4101-4114, 2022 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-37699680

RESUMO

Utilization of carbon dioxide (CO2) is a huge challenge for global sustainable development. Biological carbon fixation occurs in nature, but the low energy efficiency and slow speed hamper its commercialization. Physical-chemical carbon fixation is efficient, but relies on high energy consumption and often generates unwanted by-products. Combining the advantages of biological, physical and chemical technologies for efficient utilization of CO2 remains to be an urgent scientific and technological challenge to be addressed. Here, based on the development of Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences in the past decade, we summarize the important progress in the design and construction of functional parts, pathways and systems for artificial bioconversion of carbon dioxide, including the breakthrough on the artificial synthesis of starch from CO2. Moreover, we prospect how to further develop the technologies for artificial bioconversion of carbon dioxide. These progress and perspectives provide new insight for achieving the goal of "carbon peaking and carbon neutrality".


Assuntos
Biotecnologia , Dióxido de Carbono , Indústrias , Amido
16.
Sheng Wu Gong Cheng Xue Bao ; 38(11): 4240-4262, 2022 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-37699688

RESUMO

In nature, chirality is a common phenomenon and closely related to life, also significantly influences the properties of the substance. The chemical synthesis of chiral pharmaceutical chemicals has encountered challenges such as poor atom economy and process economy, serious environmental pollution and waste of the resource. The biosynthesis route has the advantages of high selectivity and environmental-friendliness. In recent years, the rapid developments in the accessible key enzymes, understanding of catalytic mechanism, construction of new synthetic pathways of optical pure intermediates, process development and scale-up production have made it possible to address the challenges encountered in the production of active pharmaceutical ingredients, thus promoting a green and sustainable pharmaceutical industry in China. This review summarized the achievements made in this field by researchers at Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences.


Assuntos
Biotecnologia , Poluição Ambiental , Catálise , China , Preparações Farmacêuticas
17.
Sheng Wu Gong Cheng Xue Bao ; 38(11): 4335-4342, 2022 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-37699693

RESUMO

Steroidal hormone pharmaceuticals are the second largest class of medicines after antibiotics. At present, the initial materials of the steroidal industry have shifted from sapogenins, which were extracted from plants of the genus Dioscore to phytosterols. As a byproduct of soybean oil production, phytosterols are readily available and of low prices. Androstenedione (AD), androstadiendione (ADD), 9α-hydroxy-androstenedione (9α-OH-AD) and a series of key intermediates used in the synthesis of steroidal pharmaceuticals can be produced from phytosterols by microbial transformation. Nevertheless, due to the long metabolic pathways, the byproducts and the complex regulation, traditional microbial screening, mutagenizing methods and the oil-water biphasic transformation systems are no longer suitable for current industrial production. A new generation strains for the production of key steroidal pharmaceutical intermediates have been constructed and an intelligent production process has been jointly developed by us and Zhejiang Xianju Junye Pharmaceutical Co. Ltd.. Taking these products and processes as an example, this article reviews the improvement of strains for the production of steroidal pharmaceutical intermediates and the development of biotransformation process on an industrial scale. With the development of synthetic biology, it is expected to develop a new generation of intermediates which are more suitable for the synthesis of steroidal medicines. Moreover, de novo biosynthesis the steroidal active pharmaceutical ingredients from glucose is also expected. The application of these new-generation strains constructed by biotechnology (BT) in modern factories based on informatization and intelligent technology (IT) will be more efficient and greener, and create remarkable social and economic values.


Assuntos
Fitosteróis , Sapogeninas , Androstenodiona , Esteroides , Preparações Farmacêuticas
18.
Chembiochem ; 23(5): e202100589, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951083

RESUMO

(S)-3-Cyclopentyl-3-hydroxypropanenitrile is the key precursor for the synthesis of ruxolitinib. The bioreduction of 3-cyclopentyl-3-ketopropanenitrile (1 a) offers an attractive method to access this important compound. A carbonyl reductase (PhADH) from Paraburkholderia hospita catalyzed the reduction of 1 a giving the (S)-alcohol (1 b) with 85 % ee. Rational engineering of PhADH resulted in a double mutant H93C/A139L, which enhanced the enantioselectivity from 85 % to >98 %, as well as a 6.3-fold improvement in the specific activity. The bioreduction of 1 a was performed at 200 g/L (1.5 M) substrate concentration, leading to isolation of (S)-1 b in 91 % yield. Similarly, using this mutant enzyme, 3-cyclohexyl-3-ketopropanenitrile (2 a) and 3-phenyl-3-ketopropanenitrile (3 a) were reduced at high concentration affording the corresponding alcohols in >99 % ee, and 90 % and 92 % yield, respectively. The results showed that the variant H93C/A139L was a powerful biocatalyst for reduction of ß-substituted-ß-ketonitriles.


Assuntos
Oxirredutases do Álcool , Nitrilas , Oxirredutases do Álcool/química , Etanol , Pirazóis , Pirimidinas , Estereoisomerismo
19.
Commun Chem ; 5(1): 123, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36697820

RESUMO

Since imine reductases (IREDs) were reported to catalyze the reductive amination reactions, they became particularly attractive for producing chiral amines. Though diverse ketones and aldehydes have been proved to be excellent substrates of IREDs, bulky amines have been rarely transformed. Here we report the usage of an Increasing-Molecule-Volume-Screening to identify a group of IREDs (IR-G02, 21, and 35) competent for accepting bulky amine substrates. IR-G02 shows an excellent substrate scope, which is applied to synthesize over 135 amine molecules as well as a range of APIs' substructures. The crystal structure of IR-G02 reveals the determinants for altering the substrate preference. Finally, we demonstrate a gram-scale synthesis of an analogue of the API sensipar via a kinetic resolution approach, which displays ee >99%, total turnover numbers of up to 2087, and space time yield up to 18.10 g L-1 d-1.

20.
Enzyme Microb Technol ; 149: 109837, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311882

RESUMO

Enzymatic stereospecific reduction of 17-oxosteroids offers an attractive approach to access 17ß-hydroxysteroids of pharmaceutical importance. In this study, by adjusting the flexibility of α6-helix at the substrate entrance of the alcohol dehydrogenase from Ralstonia sp. (RasADH), the catalytic activity toward the stereospecific 17ß-reduction of androstenedione was improved without sacrifice of the enantioselectivity. Among the mutants, F205I and F205A exhibited up to 623- and 523-fold improvement in catalytic efficiency, respectively, towards a range of different 17-oxosteroids compared to the wild-type enzyme. The corresponding 17ß-hydroxysteroids were prepared in optically pure form with high space-time productivity and isolated yields using F205I as the biocatalyst, indicating that these mutants are promising biocatalysts for this useful transformation. These results suggest that modulating the flexibility of the active site lid offers an effective approach to engineer alcohol dehydrogenase for accommodating bulky steroidal substrates.


Assuntos
Álcool Desidrogenase , Ralstonia , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Catálise , Domínio Catalítico , Hidroxiesteroides , Ralstonia/genética , Ralstonia/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...