Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Agric Food Chem ; 72(18): 10506-10520, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38651833

RESUMO

Sugarcane response to Sporisorium scitamineum is determined by multiple major genes and numerous microeffector genes. Here, time-ordered gene coexpression networks were applied to explore the interaction between sugarcane and S. scitamineum. Totally, 2459 differentially expressed genes were identified and divided into 10 levels, and several stress-related subnetworks were established. Interestingly, the Ca2+ signaling pathway was activated to establish the response to sugarcane smut disease. Accordingly, two CAX genes (ScCAX2 and ScCAX3) were cloned and characterized from sugarcane. They were significantly upregulated under ABA stress but inhibited by MeJA treatment. Furthermore, overexpression of ScCAX2 and ScCAX3 enhanced the susceptibility of transgenic plants to the pathogen infection, suggesting its negative role in disease resistance. A regulatory model for ScCAX genes in disease response was thus depicted. This work helps to clarify the transcriptional regulation of sugarcane response to S. scitamineum stress and the function of the CAX gene in disease response.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ustilaginales/genética , Sinalização do Cálcio/efeitos dos fármacos , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
2.
Front Plant Sci ; 15: 1375934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525140

RESUMO

Sugarcane is the most important sugar and energy crop in the world. During sugarcane breeding, technology is the requirement and methods are the means. As we know, seed is the cornerstone of the development of the sugarcane industry. Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses. Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic biology, combined with information technology such as remote sensing and deep learning. In view of this, we focus on sugarcane breeding from the perspective of technology and methods, reviewing the main history, pointing out the current status and challenges, and providing a reasonable outlook on the prospects of smart breeding.

3.
Eur J Clin Microbiol Infect Dis ; 43(3): 469-480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38172404

RESUMO

PURPOSE: Few studies have focused on the impact of human papillomavirus (HPV) positivity in male partners on female HPV infection and cervical lesions. The purpose of this study was to evaluate the impact of the HPV infection status of husbands on wives' cervical HPV infection and lesions. METHODS: We surveyed 251 monogamous couples who attended the outpatient department of Fujian Maternity and Child Health Hospital from 2013 to 2021. HPV type analysis was performed on exfoliated cells of the females' cervix and males' urethra by the PCR-reverse dot blot method. We analyzed the prevalence and consistency of HPV types in 251 couples. Subsequently, the risk of HPV infection in females with HPV-positive male partners was analyzed. SPSS version 26 (IBM, Chicago, USA) was used for statistical analysis. RESULTS: In 251 couples, the most commonly detected high-risk HPV (HR-HPV) genotypes were 52, 51, 16, and 58 for males and 16, 52, 18, and 58 for females. Wives with HPV-positive husbands had higher infection rates for most HR-HPV genotypes. HR-HPV positivity in husbands was a risk factor for the development of cervical lesions in wives (OR = 2.250, P = 0.014). Both single-type (OR = 2.085, P = 0.040) and multiple-type (OR = 2.751, P = 0.036) infection in husbands will contributed to an increased risk of non-HR-HPV infection and cervical lesions in wives. CONCLUSION: Husbands' HPV positivity increases the burden of non-HR-HPV infection and increases the risk of cervical lesions developing in wives. It is hoped to provide a reference value for cervical cancer prevention in females and HPV vaccination in males.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Gravidez , Criança , Humanos , Masculino , Feminino , Heterossexualidade , Infecções por Papillomavirus/epidemiologia , Papillomaviridae/genética , Colo do Útero , Genótipo , Prevalência , Neoplasias do Colo do Útero/epidemiologia
4.
J Agric Food Chem ; 71(26): 10004-10017, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339007

RESUMO

In plants, lysine acetylation (Kac), 2-hydroxyisobutyrylation (Khib), and lysine lactylation (Kla), the three new types of post-translational modification (PTM), play very important roles in growth, development, and resistance to adverse environmental stresses. Herein, we report the first global acetylome, 2-hydroxyisobutyrylome, and lactylome in sugarcane. A total of 8573 Kac, 4637 Khib, and 215 Kla sites across 3903, 1507, and 139 modified proteins were identified. Besides, homology analyses revealed the Kac, Khib, and Kla sites on histones were conserved between sugarcane and rice or poplar. Functional annotations demonstrated that the Kac, Khib, and Kla proteins were mainly involved in energy metabolism. In addition, a number of modified transcription factors and stress-related proteins, which were constitutively expressed in different tissues of sugarcane and induced by drought, cold or Sporisorium scitamineum stress, were identified. Finally, a proposed working mode on how PTM functions in sugarcane was depicted. We thus concluded that PTM should play a role in sugarcane growth, development, and response to biotic and abiotic stresses, but the mechanisms require further investigation. The present study provided the all-new comprehensive profile of proteins Kac, Khib, and Kla and a new perspective to understand the molecular mechanisms of protein PTMs in sugarcane.


Assuntos
Saccharum , Saccharum/genética , Saccharum/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Histonas/genética , Histonas/metabolismo , Acetilação
5.
Plant Physiol Biochem ; 200: 107760, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207494

RESUMO

Sugarcane is an important sugar and energy crop and smut disease caused by Sporisorium scitamineum is a major fungal disease which can seriously reduce the yield and quality of sugarcane. In plants, TGACG motif binding (TGA) transcription factors are involved in the regulation of salicylic acid (SA) and methyl jasmonate (MeJA) signaling pathways, as well as in response to various biotic and abiotic stresses. However, no TGA-related transcription factor has been reported in Saccharum. In the present study, 44 SsTGA genes were identified from Saccharum spontaneum, and were assorted into three clades (I, II, III). Cis-regulatory elements (CREs) analysis revealed that SsTGA genes may be involved in hormone and stress response. RNA-seq data and RT-qPCR analysis indicated that SsTGAs were constitutively expressed in different tissues and induced by S. scitamineum stress. In addition, a ScTGA1 gene (GenBank accession number ON416997) was cloned from the sugarcane cultivar ROC22, which was homologous to SsTGA1e in S. spontaneum and encoded a nucleus protein. It was constitutively expressed in sugarcane tissues and up-regulated by SA, MeJA and S. scitamineum stresses. Furthermore, transient overexpression of ScTGA1 in Nicotiana benthamiana could enhance its resistance to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum, by regulating the expression of immune genes related to hypersensitive response (HR), ethylene (ET), SA and jasmonic acid (JA) pathways. This study should contribute to our understanding on the evolution and function of the SsTGA gene family in Saccharum, and provide a basis for the functional identification of ScTGA1 under biotic stresses.


Assuntos
Saccharum , Ustilaginales , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Ustilaginales/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Front Plant Sci ; 14: 1107314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818882

RESUMO

Mosaic viral diseases affect sugarcane productivity worldwide. Mining disease resistance-associated molecular markers or genes is a key component of disease resistance breeding programs. In the present study, 285 F1 progeny were produced from a cross between Yuetang 93-159, a moderately resistant variety, and ROC22, a highly susceptible variety. The mosaic disease symptoms of these progenies, with ROC22 as the control, were surveyed by natural infection under 11 different environmental conditions in the field and by artificial infections with a mixed sugarcane mosaic virus (SCMV) and sorghum mosaic virus (SrMV) inoculum. Analysis of consolidated survey data enabled the identification of 29 immune, 55 highly resistant, 70 moderately resistant, 62 susceptible, and 40 highly susceptible progenies. The disease response data and a high-quality SNP genetic map were used in quantitative trait locus (QTL) mapping. The results showed that the correlation coefficients (0.26~0.91) between mosaic disease resistance and test environments were significant (p< 0.001), and that mosaic disease resistance was a highly heritable quantitative trait (H2 = 0.85). Seven mosaic resistance QTLs were located to the SNP genetic map, each QTL accounted for 3.57% ~ 17.10% of the phenotypic variation explained (PVE). Furthermore, 110 pathogen response genes and 69 transcription factors were identified in the QTLs interval. The expression levels of nine genes (Soffic.07G0015370-1P, Soffic.09G0015410-2T, Soffic.09G0016460-1T, Soffic.09G0016460-1P, Soffic.09G0017080-3C, Soffic.09G0018730-3P, Soffic.09G0018730-3C, Soffic.09G0019920-3C and Soffic.03G0019710-2C) were significantly different between resistant and susceptible progenies, indicating their key roles in sugarcane resistance to SCMV and SrMV infection. The seven QTLs and nine genes can provide a certain scientific reference to help sugarcane breeders develop varieties resistant to mosaic diseases.

7.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769121

RESUMO

The processes of sugarcane tillering and ratooning, which directly affect the yield of plant cane and ratoon, are of vital importance to the population establishment and the effective stalk number per unit area. In the present study, the phenotypic data of 285 F1 progenies from a cross of sugarcane varieties YT93-159 × ROC22 were collected in eight environments, which consisted of plant cane and ratoon cultivated in three different ecological sites. The broad sense heritability (H2) of the tillering and the ratoon sprouting was 0.64 and 0.63, respectively, indicating that they were middle to middle-high heritable traits, and there is a significantly positive correlation between the two traits. Furthermore, a total of 26 quantitative trait loci (QTLs) related to the tillering ability and 11 QTLs associated with the ratooning ability were mapped on two high-quality genetic maps derived from a 100K SNP chip, and their phenotypic variance explained (PVE) ranged from 4.27-25.70% and 6.20-13.54%, respectively. Among them, four consistent QTLs of qPCTR-R9, qPCTR-Y28, qPCTR-Y60/qRSR-Y60 and PCTR-Y8-1/qRSR-Y8 were mapped in two environments, of which, qPCTR-Y8-1/qRSR-Y8 had the PVEs of 11.90% in the plant cane and 7.88% in the ratoon. Furthermore, a total of 25 candidate genes were identified in the interval of the above four consistent QTLs and four major QTLs of qPCTR-Y8-1, qPCTR-Y8-2, qRSR-R51 and qRSR-Y43-2, with the PVEs from 11.73-25.70%. All these genes were associated with tillering, including eight transcription factors (TFs), while 15 of them were associated with ratooning, of which there were five TFs. These QTLs and genes can provide a scientific reference for genetic improvement of tillering and ratooning traits in sugarcane.


Assuntos
Locos de Características Quantitativas , Saccharum , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Saccharum/genética , Marcadores Genéticos , Fenótipo , Ligação Genética
8.
Int J Biol Macromol ; 232: 123398, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36702220

RESUMO

In plants, catalase (CAT) mainly scavenges H2O2 from reactive oxygen species (ROS) and regulates the growth and development. So far, genome-wide identification of CAT gene family in Saccharum has not yet been reported. Here, 16 SsCAT genes were identified based on a Saccharum spontaneum genome. They were clustered into three subfamilies, with closer genes sharing similar structures. Most SsCAT proteins contained three conserved amino acids, one active catalytic site, one heme-ligand signature, and three peroxisomal targeting signal 1 (PTS1) sequences. The cis-regulatory element prediction revealed that SsCAT genes were involved in growth and development, and in response to various hormones and stresses. RNA-Seq databases showed that SsCAT genes were differentially expressed in Saccharum tissues and under cold, drought, and Sporisorium scitamineum stresses. The ScCAT1 gene transcript (GenBank accession number KF664183) and relevant CAT activity were up-regulated under S. scitamineum stress. Overexpression of ScCAT1 gene in Nicotiana benthamiana could enhance its resistance to pathogen infection through scavenging of excessive toxic ROS and up-regulated expressions of genes related to hypersensitive response (HR), ROS and salicylic acid (SA) pathways. This study provides comprehensive information for the CAT gene family and sets up a basis for its function identification in sugarcane.


Assuntos
Saccharum , Saccharum/genética , Saccharum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Resistência à Doença/genética , Peróxido de Hidrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química
9.
Clin Transl Oncol ; 25(4): 1114-1123, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36471225

RESUMO

PURPOSE: Choriocarcinoma (CC) is a rare and highly malignant epithelial tumour. However, the mechanism underlying its occurrence and development remains unknown. We aimed to reveal the biological significance and prognostic value of Claudin-6 (CLDN6) in gestational trophoblastic disease (GTD). PATIENTS AND METHODS: We collected clinical GTD specimens from 2011 to 2019 and measured CLDN6 gene expression by immunohistochemistry (IHC). High-throughput mRNA sequencing (RNA-seq) revealed a GTD progression-associated gene. CCK-8, wound healing, and flow cytometry assays were used to assess the biological effects of CLDN6 overexpression and knockdown. The medical records of 118 GTD patients from 2011 to 2019 were retrospectively analysed to identify correlations between CLDN6 expression and GTD patient clinical-pathological parameters; these correlations were analysed using the chi-square test and one-way ANOVA. Univariate logistic regression was used to analyse various prognostic parameters of patients with post-molar GTN. RESULTS: CLDN6 had the second highest fold change in gene expression between GTN and normal samples. CLDN6 was highly expressed in GTN tissues and CC cell lines, and silencing CLDN6 inhibited the proliferation and migration and promoted the apoptosis of CC cells. CLDN6 overexpression was significantly correlated with uterine size (p = 0.01) and ovarian cysts > 6 cm (p = 0.027), CLDN6 expression was significantly higher in HR-GTNs than in low-risk GTNs (LR-GTNs) (p = 0.008), and logistic regression analysis showed that CLDN6 expression in hydatidiform moles (HMs) was related to a high risk of developing post-molar GTN (OR = 2.393, p = 0.03). CONCLUSION: We propose that CLDN6 participates in the development of GTD and may become a new therapeutic target for CC.


Assuntos
Doença Trofoblástica Gestacional , Neoplasias Uterinas , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Doença Trofoblástica Gestacional/genética , Doença Trofoblástica Gestacional/patologia , Claudinas/genética , Claudinas/metabolismo , Proliferação de Células , Neoplasias Uterinas/genética
10.
Front Plant Sci ; 14: 1337144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259907

RESUMO

The sugar industry, which relates to people's livelihood, is strategic and fundamental in the development of agricultural economy. In China, sugar derived from sugarcane accounts for approximately 85% of total sugar production. Mechanization is the "flower" of sugarcane industry. As the saying goes "when there are blooming flowers, there will be sweet honey." However, due to limitations in land resources, technology, equipment, organization, and management, mechanization throughout the sugarcane production process has not yet brought about the economic benefits that a mechanized system should provide and has not reached an ideal yield through the integration of agricultural machinery and agronomic practice. This paper briefly describes how to initiate the mechanization of Chinese sugarcane production to promote the sound, healthy, and rapid development of the sugarcane industry, and how to ultimately achieve the transformation of sugarcane breeding in China and the modernization of the sugarcane industry from three perspectives, namely, requirements of mechanized production for sugarcane varieties, breeding strategies for selecting new sugarcane varieties suitable for mechanized production, and screening for sugarcane varieties that are suitable for mechanization and diversification in variety distribution or arrangement in China. We also highlight the current challenges surrounding this topic and look forward to its bright prospects.

11.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555141

RESUMO

Sugarcane brown stripe (SBS), caused by the fungal pathogen Helminthosporium stenospilum, is one of the most serious threats to sugarcane production. However, its outbreaks and epidemics require suitable climatic conditions, resulting in the inefficient improvement of the SBS resistance by phenotype selection. The sugarcane F1 population of SBS-resistant YT93-159 × SBS-susceptible ROC22 was used for constructing the bulks. Bulked segregant RNA-seq (BSR-seq) was then performed on the parents YT93-159 (T01) and ROC22 (T02), and the opposite bulks of 30 SBS-susceptible individuals mixed bulk (T03) and 30 SBS-resistant individuals mixed bulk (T04) collected from 287 F1 individuals. A total of 170.00 Gb of clean data containing 297,921 SNPs and 70,426 genes were obtained. Differentially expressed genes (DEGs) analysis suggested that 7787 and 5911 DEGs were identified in the parents (T01 vs. T02) and two mixed bulks (T03 vs. T04), respectively. In addition, 25,363 high-quality and credible SNPs were obtained using the genome analysis toolkit GATK for SNP calling. Subsequently, six candidate regions with a total length of 8.72 Mb, which were located in the chromosomes 4B and 7C of sugarcane wild species Saccharum spontaneum, were identified, and 279 genes associated with SBS-resistance were annotated by ED algorithm and ΔSNP-index. Furthermore, the expression profiles of candidate genes were verified by quantitative real-time PCR (qRT-PCR) analysis, and the results showed that eight genes (LRR-RLK, DHAR1, WRKY7, RLK1, BLH4, AK3, CRK34, and NDA2) and seven genes (WRKY31, CIPK2, CKA1, CDPK6, PFK4, CBL2, and PR2) of the 20 tested genes were significantly up-regulated in YT93-159 and ROC22, respectively. Finally, a potential molecular mechanism of sugarcane response to H. stenospilum infection is illustrate that the activations of ROS signaling, MAPK cascade signaling, Ca2+ signaling, ABA signaling, and the ASA-GSH cycle jointly promote the SBS resistance in sugarcane. This study provides abundant gene resources for the SBS resistance breeding in sugarcane.


Assuntos
Saccharum , RNA-Seq , Saccharum/metabolismo , Melhoramento Vegetal , Sequência de Bases , Transdução de Sinais , Regulação da Expressão Gênica de Plantas
12.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361540

RESUMO

Gretchen Hagen3 (GH3), one of the three major auxin-responsive gene families, is involved in hormone homeostasis in vivo by amino acid splicing with the free forms of salicylic acid (SA), jasmonic acid (JA) or indole-3-acetic acid (IAA). Until now, the functions of sugarcane GH3 (SsGH3) family genes in response to biotic stresses have been largely unknown. In this study, we performed a systematic identification of the SsGH3 gene family at the genome level and identified 41 members on 19 chromosomes in the wild sugarcane species, Saccharum spontaneum. Many of these genes were segmentally duplicated and polyploidization was the main contributor to the increased number of SsGH3 members. SsGH3 proteins can be divided into three major categories (SsGH3-I, SsGH3-II, and SsGH3-III) and most SsGH3 genes have relatively conserved exon-intron arrangements and motif compositions. Diverse cis-elements in the promoters of SsGH3 genes were predicted to be essential players in regulating SsGH3 expression patterns. Multiple transcriptome datasets demonstrated that many SsGH3 genes were responsive to biotic and abiotic stresses and possibly had important functions in the stress response. RNA sequencing and RT-qPCR analysis revealed that SsGH3 genes were differentially expressed in sugarcane tissues and under Sporisorium scitamineum stress. In addition, the SsGH3 homolog ScGH3-1 gene (GenBank accession number: OP429459) was cloned from the sugarcane cultivar (Saccharum hybrid) ROC22 and verified to encode a nuclear- and membrane-localization protein. ScGH3-1 was constitutively expressed in all tissues of sugarcane and the highest amount was observed in the stem pith. Interestingly, it was down-regulated after smut pathogen infection but up-regulated after MeJA and SA treatments. Furthermore, transiently overexpressed Nicotiana benthamiana, transduced with the ScGH3-1 gene, showed negative regulation in response to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum. Finally, a potential model for ScGH3-1-mediated regulation of resistance to pathogen infection in transgenic N. benthamiana plants was proposed. This study lays the foundation for a comprehensive understanding of the sequence characteristics, structural properties, evolutionary relationships, and expression of the GH3 gene family and thus provides a potential genetic resource for sugarcane disease-resistance breeding.


Assuntos
Saccharum , Saccharum/genética , Saccharum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Plantas Geneticamente Modificadas/metabolismo
13.
Front Plant Sci ; 13: 1035266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311133

RESUMO

Sugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases worldwide. In this study, a cross was made between a smut-resistant variety YT93-159 and a smut-susceptible variety ROC22, and 312 progenies were obtained. Two bulks of progenies were then constructed, one consisted of 27 highly smut resistant progenies and the other 24 smut susceptible progenies. Total RNAs of the progenies of each bulk, were pooled and subject to bulked segregant RNA-sequence analysis (BSR-Seq). A total of 164.44 Gb clean data containing 2,341,449 SNPs and 64,999 genes were obtained, 7,295 of which were differentially expressed genes (DEGs). These DEGs were mainly enriched in stress-related metabolic pathways, including carbon metabolism, phenylalanine metabolism, plant hormone signal transduction, glutathione metabolism, and plant-pathogen interactions. Besides, 45,946 high-quality, credible SNPs, a 1.27 Mb region at Saccharum spontaneum chromosome Chr5B (68,904,827 to 70,172,982), and 129 candidate genes were identified to be associated with smut resistance. Among them, twenty-four genes, either encoding key enzymes involved in signaling pathways or being transcription factors, were found to be very closely associated with stress resistance. RT-qPCR analysis demonstrated that they played a positive role in smut resistance. Finally, a potential molecular mechanism of sugarcane and S. scitamineum interaction is depicted that activations of MAPK cascade signaling, ROS signaling, Ca2+ signaling, and PAL metabolic pathway and initiation of the glyoxalase system jointly promote the resistance to S. scitamineum in sugarcane. This study provides potential SNP markers and candidate gene resources for smut resistance breeding in sugarcane.

14.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142681

RESUMO

Sugarcane smut is a major fungal disease caused by Sporisorium scitamineum, which seriously reduces the yield and quality of sugarcane. In this study, 36 transcriptome data were collected from two sugarcane genotypes, YT93-159 (resistant) and ROC22 (susceptible) upon S. scitamineum infection. Data analysis revealed 20,273 (12,659 up-regulated and 7614 down-regulated) and 11,897 (7806 up-regulated and 4091 down-regulated) differentially expressed genes (DEGs) in YT93-159 and ROC22, respectively. A co-expression network was then constructed by weighted gene co-expression network analysis (WGCNA), which identified 5010 DEGs in 15 co-expressed gene modules. Four of the 15 modules, namely, Skyblue, Salmon, Darkorange, and Grey60, were significantly associated with smut resistance. The GO and KEGG enrichment analyses indicated that the DEGs involving in these four modules could be enriched in stress-related metabolic pathways, such as MAPK and hormone signal transduction, plant-pathogen interaction, amino acid metabolism, glutathione metabolism, and flavonoid, and phenylpropanoid biosynthesis. In total, 38 hub genes, including six from the Skyblue module, four from the Salmon module, 12 from the Darkorange module, and 16 from the Grey60 module, were screened as candidate hub genes by calculating gene connectivity in the corresponding network. Only 30 hub genes were amplifiable with RT-qPCR, of which 27 were up-regulated upon S. scitamineum infection. The results were consistent with the trend of gene expression in RNA-Seq, suggesting their positive roles in smut resistance. Interestingly, the expression levels of AOX, Cyb5, and LAC were higher in ROC22 than in YT93-159, indicating these three genes may act as negative regulators in response to S. scitamineum infection. This study revealed the transcriptome dynamics in sugarcane challenged by S. scitamineum infection and provided gene targets for smut resistance breeding in sugarcane.


Assuntos
Saccharum , Ustilaginales , Aminoácidos/metabolismo , Grão Comestível/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Glutationa/metabolismo , Hormônios/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/metabolismo , Ustilaginales/genética
15.
BMC Plant Biol ; 22(1): 247, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35585486

RESUMO

BACKGROUND: Sugarcane mosaic disease (SMD) is a major viral disease of sugarcane (Saccharum spp.) worldwide. Sorghum mosaic virus (SrMV) is the dominant pathogen of SMD in the sugarcane planting areas of China. There is no report on miRNAs and their regulatory networks in sugarcane response to SrMV infection. RESULTS: In this study, small RNA sequencing (sRNA-seq) of samples from the leaves of SMD-susceptible variety ROC22 and -resistant variety FN39 infected by SrMV was performed. A total of 132 mature miRNAs (55 known miRNAs and 77 novel miRNAs) corresponding to 1,037 target genes were identified. After the SrMV attack, there were 30 differentially expressed miRNAs (17 up-regulated and 13 down-regulated) in FN39 and 19 in ROC22 (16 up-regulated and 3 down-regulated). Besides, there were 18 and 7 variety-specific differentially expressed miRNAs for FN39 and ROC22, respectively. KEGG enrichment analysis showed that the differentially expressed miRNAs targeted genes involved in several disease resistance-related pathways, such as mRNA surveillance, plant pathway interaction, sulfur metabolism, and regulation of autophagy. The reliability of sequencing data, and the expression patterns / regulation relationships between the selected differentially expressed miRNAs and their target genes in ROC22 and FN39 were confirmed by quantitative real-time PCR. A regulatory network diagram of differentially expressed miRNAs and their predicted target genes in sugarcane response to SrMV infection was sketched. In addition, precursor sequences of three candidate differentially expressed novel miRNAs (nov_3741, nov_22650 and nov_40875) were cloned from the ROC22 leaf infected by SrMV. Transient overexpression demonstrated that they could induce the accumulation of hydrogen peroxide and the expression level of hypersensitive response marker genes, salicylic acid-responsive genes and ethylene synthesis-depended genes in Nicotiana benthamiana. It is thus speculated that these three miRNAs may be involved in regulating the early immune response of sugarcane plants following SrMV infection. CONCLUSIONS: This study lays a foundation for revealing the miRNA regulation mechanism in the interaction of sugarcane and SrMV, and also provides a resource for miRNAs and their predicted target genes for SrMV resistance improvement in sugarcane.


Assuntos
MicroRNAs , Vírus do Mosaico , Potyvirus , Saccharum , Sorghum , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus do Mosaico/genética , Vírus do Mosaico/metabolismo , Doenças das Plantas/genética , Reprodutibilidade dos Testes , Saccharum/metabolismo , Sorghum/genética , Sorghum/metabolismo
16.
J Colloid Interface Sci ; 614: 617-628, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35121519

RESUMO

Directly anchoring active materials on porous conductive substrates is considered an effective strategy to obtain a high-activity electrode since the direct contact between active materials and substrates benefits charge transfer, and the presence of porous structures provides more active sites. However, due to the presence of strong stress and weak adhesion, active materials loaded on the substrate are very easy to peel off during assembly and use, which can greatly shorten the lifetime of use. Herein, an ultrasonic corrosion strategy is proposed to regulate the surface of a metal substrate. We find that ultrasonic oxygen corrosion and interfacial water control play key roles in fabricating the complex electrode, which can help the surface of Cu foam to form special lamellar cross-linked CuO nanoarchitectures with strong adhesion and then overcome the defect of the deposited NiCo layered double hydroxides (NC LDH) on the stress and adhesion. The expected electrode shows more than 70% improvement in cycling stability at an ultra-high current density of 20 A g-1, relative to the active material layer of the electrode with strong stress and weak adhesion. Meanwhile, benefiting from its lamellar cross-linked nanoarchitectures having large specific surface area and many nano-pores, it presents a high specific capacitance of 3010.8F g-1 at 1 A g-1 and a good rate capability of 59.3% at 50 A g-1. It is foreseen that this finding provides a novel, universal strategy for managing the surface and interface of the metal substrate, thereby obtaining a reliable, stable electrode.

17.
J Cancer ; 12(12): 3671-3677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995642

RESUMO

Background: To evaluate the prognostic value of the systemic inflammatory score (SIS) in cervical cancer patients. Methods: A total of 264 patients with FIGO stage (2009) IB-IIA cervical cancer undergoing radical resection from January 2014 to December 2017 were recruited. The optimal cutoff values for inflammatory biomarkers were calculated by X-tile software. The prognostic factors were investigated using univariate and multivariate Cox analyses. Time-dependent receiver operating characteristic (time-ROC) analysis and the concordance index (C-index) were used to compare the prognostic impact of factors. Results: In total, 264 patients with cervical cancer were included in the study. The optimal cutoff value for lymphocyte-to-monocyte ratio (LMR) was 4.1. In multivariate analysis, FIGO stage, lymphovascular invasion, lymph node metastasis, preoperative serum albumin (Alb), and LMR were independent prognostic factors (P<0.05). Then, we combined preoperative Alb and LMR to establish the SIS. Multivariate analysis showed that the SIS was an independent factor that affected survival (P<0.05). When stratified by FIGO stage, significant differences in survival were also found for patients with different SISs (P<0.05). When the SIS and FIGO stage were combined, the time-ROC curve was superior to that of FIGO stage only. The C-index of the model combining the SIS and FIGO stage was 0.786 (95% CI 0.699-0.873), which was significantly higher than that of the model with FIGO stage only (0.676, 95% CI 0.570-0.782, P=0.0049). Conclusions: The preoperative SIS is a simple and useful prognostic factor for postoperative survival in patients with cervical cancer. It might assist in the identification of high-risk patients among patients with the same FIGO stage.

18.
Gynecol Endocrinol ; 37(2): 108-112, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32584203

RESUMO

BACKGROUND: Gestational trophoblastic disease (GTD) is a group of interrelated but distinct diseases and has a serious impact on the reproductive health of women. To analyze the expression of Nanog in GTD and to evaluate its potential to predict the development of gestational trophoblastic neoplasia (GTN). METHODS: The study included 41 normal first-trimester placentas matched by gestational age to 53 regressed-hydatidiform-moles (rHMs), 56 malignant-HMs (mHMs) and 17 choriocarcinomas (CCAs) and evaluated the Nanog expression by immunohistochemistry. The chi-square test, ANOVA, Fisher's exact test and logistic regression were performed to assess the Nanog expression and clinical prognostic factors in GTD. RESULTS: Compared to normal placenta levels, the Nanog expression was increased in GTD samples (p < .05). In HMs, Nanog expression was positively correlated with serum ß-hCG levels,uterine size and theca-lutein cysts (p < .05). Compared with the low-risk metastatic group (Federation of Gynecology and Obstetrics (FIGO) score ≤ 6), the high-risk metastatic group (FIGO score >7) had higher Nanog expression (p = .030). Moreover, logistic regression analysis showed that the positive expression of Nanog had the highest risk of developing into GTN (OR = 4.764, p < .001). CONCLUSIONS: Nanog is an independent predictor of clinical outcomes. It can also be a reliable predictor for GTN development from GTD.


Assuntos
Doença Trofoblástica Gestacional/metabolismo , Proteína Homeobox Nanog/metabolismo , Adulto , Povo Asiático , Estudos de Casos e Controles , Feminino , Doença Trofoblástica Gestacional/diagnóstico , Humanos , Gravidez , Prognóstico
19.
Dalton Trans ; 49(21): 6964-6968, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32400810

RESUMO

Here we report an ultra-effective and reliable pathway to reduce GO into graphene by an about 4 seconds flame-assisted microwave process. A holey graphene with a C/O atom ratio of 31.1, a pore volume of 6.0 cm3 g-1, and a specific surface area of 1050.0 m2 g-1 was synthesized.

20.
PeerJ ; 6: e5873, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402355

RESUMO

Glyoxalase I belongs to the glyoxalase system that detoxifies methylglyoxal (MG), a cytotoxic by-product produced mainly from triose phosphates. The concentration of MG increases rapidly under stress conditions. In this study, a novel glyoxalase I gene, designated as SoGloI was identified from sugarcane. SoGloI had a size of 1,091 bp with one open reading frame (ORF) of 885 bp encoding a protein of 294 amino acids. SoGloI was predicted as a Ni2+-dependent GLOI protein with two typical glyoxalase domains at positions 28-149 and 159-283, respectively. SoGloI was cloned into an expression plasmid vector, and the Trx-His-S-tag SoGloI protein produced in Escherichia coli was about 51 kDa. The recombinant E. coli cells expressing SoGloI compared to the control grew faster and tolerated higher concentrations of NaCl, CuCl2, CdCl2, or ZnSO4. SoGloI ubiquitously expressed in various sugarcane tissues. The expression was up-regulated under the treatments of NaCl, CuCl2, CdCl2, ZnSO4 and abscisic acid (ABA), or under simulated biotic stress conditions upon exposure to salicylic acid (SA) and methyl jasmonate (MeJA). SoGloI activity steadily increased when sugarcane was subjected to NaCl, CuCl2, CdCl2, or ZnSO4 treatments. Sub-cellular observations indicated that the SoGloI protein was located in both cytosol and nucleus. These results suggest that the SoGloI gene may play an important role in sugarcane's response to various biotic and abiotic stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...