Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Appl Clin Med Phys ; 25(4): e14213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425126

RESUMO

PURPOSE: To develop a Total Body Irradiation (TBI) technique using IMRT at extended SSD that can be performed in any size Linac room. METHODS: Patients studied were placed on a platform close to the floor, directly under the gantry with cranial-caudal axis parallel to the gantry rotation plane and at SSD ∼200 cm. Two abutting fields with the same external isocenter at gantry angles of ±21˚, collimator angle of 90˚, and field size of 25 × 40 cm2 are employed for both supine and prone positions. An iterative optimization algorithm was developed to generate a uniform dose at the patient mid-plane with adequate shielding to critical organs such as lungs and kidneys. The technique was validated in both phantom and patient CT images for treatment planning, and dose measurement and QA were performed in phantom. RESULTS: A uniform dose distribution in the mid-plane within ±5% of the prescription dose was reached after a few iterations. This was confirmed with ion-chamber measurements in phantom. The mean dose to lungs and kidneys can be adjusted according to clinical requirements and can be as low as ∼25% of the prescription dose. For a typical prescription dose of 200 cGy/fraction, the total MU was ∼2400/1200 for the superior/inferior field. The overall treatment time for both supine/prone positions was ∼54 min to meet the maximum absorbed dose rate criteria of 15 cGy/min. IMRT QA with portal dosimetry shows excellent agreement. CONCLUSIONS: We have developed a promising TBI technique using abutting IMRT fields at extended SSD. The patient is in a comfortable recumbent position with good reproducibility and less motion during treatment. An additional benefit of this technique is that full 3D dose distribution is available from the TPS with a DVH summary for organs of interest. The technique allows precise sparing of lungs and kidneys and can be executed in any linac room.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Irradiação Corporal Total , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Radiometria/métodos , Dosagem Radioterapêutica
2.
Med Phys ; 51(2): 1460-1473, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37757449

RESUMO

BACKGROUND: Seed implant brachytherapy (SIBT) is an effective treatment modality for head and neck (H&N) cancers; however, current clinical planning requires manual setting of needle paths and utilizes inaccurate dose calculation algorithms. PURPOSE: This study aims to develop an accurate and efficient deep convolutional neural network dose engine (DCNN-DE) and an automatic SIBT planning method for H&N SIBT. METHODS: A cohort of 25 H&N patients who received SIBT was utilized to develop and validate the methods. The DCNN-DE was developed based on 3D-unet model. It takes single seed dose distribution from a modified TG-43 method, the CT image and a novel inter-seed shadow map (ISSM) as inputs, and predicts the dose map of accuracy close to the one from Monte Carlo simulations (MCS). The ISSM was proposed to better handle inter-seed attenuation. The accuracy and efficacy of the DCNN-DE were validated by comparing with other methods taking MCS dose as reference. For SIBT planning, a novel strategy inspired by clinical practice was proposed to automatically generate parallel or non-parallel potential needle paths that avoid puncturing bone and critical organs. A heuristic-based optimization method was developed to optimize the seed positions to meet clinical prescription requirements. The proposed planning method was validated by re-planning the 25 cases and comparing with clinical plans. RESULTS: The absolute percentage error in the TG-43 calculation for CTV V100 and D90 was reduced from 5.4% and 13.2% to 0.4% and 1.1% with DCNN-DE, an accuracy improvement of 93% and 92%, respectively. The proposed planning method could automatically obtain a plan in 2.5 ± 1.5 min. The generated plans were judged clinically acceptable with dose distribution comparable with those of the clinical plans. CONCLUSIONS: The proposed method can generate clinically acceptable plans quickly with high accuracy in dose evaluation, and thus has a high potential for clinical use in SIBT.


Assuntos
Braquiterapia , Neoplasias de Cabeça e Pescoço , Humanos , Braquiterapia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Redes Neurais de Computação , Algoritmos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Método de Monte Carlo
3.
Cancer ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897711

RESUMO

BACKGROUND: Recipients of radiation therapy (RT) for head and neck cancer (HNC) are at significantly increased risk for carotid artery stenosis (CAS) and cerebrovascular disease (CVD). We sought to determine (1) cumulative incidences of CAS and CVD among HNC survivors after RT and (2) whether CAS is associated with a RT dose response effect. METHODS: This single-institution retrospective cohort study examined patients with nonmetastatic HNC who completed (chemo)RT from January 2000 through October 2020 and subsequently received carotid imaging surveillance ≤2 years following RT completion and, in the absence of CAS, every 3 years thereafter. Exclusion criteria included history of known CAS/CVD. Asymptomatic CAS was defined as ≥50% reduction of luminal diameter, symptomatic CAS as stroke or transient ischemic attack, and composite CAS as asymptomatic or symptomatic CAS. RESULTS: Of 628 patients undergoing curative intent RT for HNC, median follow-up was 4.8 years (interquartile range, 2.6-8.3), with 97 patients followed ≥10 years. Median age was 61 years and 69% of patients received concurrent chemotherapy and 28% were treated postoperatively. Actuarial 10-year incidences of asymptomatic, symptomatic, and composite CAS were 29.6% (95% CI, 23.9-35.5), 10.1% (95% CI, 7.0-13.9), and 27.2% (95% CI, 22.5-32.1), respectively. Multivariable Cox models significant association between asymptomatic CAS and absolute carotid artery volume receiving ≥10 Gy (per mL: hazard ratio, 1.09; 95% CI, 1.02-1.16). CONCLUSIONS: HNC survivors are at high risk for post-RT CAS. A dose response effect was observed for asymptomatic CAS at doses as low as 10 Gy. PLAIN LANGUAGE SUMMARY: Recipients of radiation therapy for head and neck cancer are at significantly increased risk for carotid artery stenosis and cerebrovascular disease. However, carotid artery screening is not routinely performed among head and neck survivors following radiation therapy. In this single-institution retrospective cohort study, patients with head and neck cancer were initially screened for carotid artery stenosis ≤2 years following radiation therapy completion, then every 3 years thereafter. The 10-year actuarial incidence of carotid artery stenosis was >25% and stroke/transient ischemic attack >10%. Multivariable analysis demonstrated significant associations between asymptomatic carotid artery stenosis and artery volumes receiving ≥10 Gy.

4.
Cell Mol Life Sci ; 80(11): 327, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837447

RESUMO

Salt-sensitivity hypertension (SSHTN) is an independent predictor for cardiovascular mortality. VEGFC has been reported to be a protective role in SSHTN and hypertensive kidney injury. However, the underlying mechanisms remain largely unclear. The current study aimed to explore the protective effects and mechanisms of VEGFC against SSHTN and hypertensive nephropathy. Here, we reported that VEGFC attenuated high blood pressure as well as protected against renal inflammation and fibrosis in SSHTN mice. Moreover, VEGFC suppressed the activation of renal NLRP3 inflammasome in SSHTN mice. In vitro, we found VEGFC inhibited NLRP3 inflammasome activation, meanwhile, upregulated autophagy in high-salt-induced macrophages, while these effects were reversed by an autophagy inhibitor 3MA. Furthermore, in vivo, 3MA pretreatment weakened the protective effects of VEGFC on SSHTN and hypertensive nephropathy. Mechanistically, VEGF receptor 3 (VEGFR3) kinase domain activated AMPK by promoting the phosphorylation at Thr183 via binding to AMPK, thus enhancing autophagy activity in the context of high-salt-induced macrophages. These findings indicated that VEGFC inhibited NLRP3 inflammasome activation by promoting VEGFR3-AMPK-dependent autophagy pathway in high-salt-induced macrophages, which provided a mechanistic basis for the therapeutic target in SSHTN and hypertensive kidney injury.


Assuntos
Hipertensão , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia
5.
Front Oncol ; 12: 1009553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408155

RESUMO

Purpose: Modern Linacs are equipped with multiple photon energies for radiation therapy, and proper energy is chosen for each case based on tumor characteristics and patient anatomy. The aim of this study is to investigate whether it is necessary to have more than two photons energies. Methods: The principle of photon energy synthesis is presented. It is shown that a photon beam of any intermediate energy (Esyn) can be synthesized from a linear combination of a low energy (Elow) and a high energy (Ehigh). The principle is validated on a wide range of scenarios: different intermediate photon energies on the same Linac; between Linacs from the same manufacturer or different manufacturers; open and wedge beams; and extensive photon energies available from published reference data. In addition, 3D dose distributions in water phantom are compared using Gamma analysis. The method is further demonstrated in clinical cases of various tumor sites and multiple treatment modalities. Experimental measurements are performed for IMRT plans and they are analyzed using the standard clinical protocol. Results: The synthesis coefficients vary with energy and field size. The root mean square error (RMSE) is within 1.1% for open and wedge fields. Excellent agreement was observed for British Journal of Radiology (BJR) data with an average RMSE of 0.11%. The 3D Gamma analysis shows a good match for all field sizes in the water phantom and all treatment modalities for the five clinical cases. The minimum gamma passing rate of 95.7% was achieved at 1%/1mm criteria for two measured dose distributions of IMRT plans. Conclusion: A Linac with two photon energies is capable of producing dosimetrically equivalent plans of any energy in-between through the photon energy synthesis, supporting the notion that there is no need to equip more than two photon energies on each Linac. This can significantly reduce the cost of equipment for radiation therapy.

6.
Phys Med Biol ; 67(21)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36206747

RESUMO

Objective. Deep learning (DL) models for fluence map prediction (FMP) have great potential to reduce treatment planning time in intensity-modulated radiation therapy (IMRT) by avoiding the lengthy inverse optimization process. This study aims to improve the rigor of input feature design in a DL-FMP model by examining how different designs of input features influence model prediction performance.Approach. This study included 231 head-and-neck intensity-modulated radiation therapy patients. Three input feature designs were investigated. The first design (D1) assumed that information of all critical structures from all beam angles should be combined to predict fluence maps. The second design (D2) assumed that local anatomical information was sufficient for predicting radiation intensity of a beamlet at a respective beam angle. The third design (D3) assumed the need for both local anatomical information and inter-beam modulation to predict radiation intensity values of the beamlets that intersect at a voxel. For each input design, we tailored the DL model accordingly. All models were trained using the same set of ground truth plans (GT plans). The plans generated by DL models (DL plans) were analyzed using key dose-volume metrics. One-way ANOVA with multiple comparisons correction (Bonferroni method) was performed (significance level = 0.05).Main results. For PTV-related metrics, all DL plans had significantly higher maximum dose (p < 0.001), conformity index (p < 0.001), and heterogeneity index (p < 0.001) compared to GT plans, with D2 being the worst performer. Meanwhile, except for cord+5 mm (p < 0.001), DL plans of all designs resulted in OAR dose metrics that are comparable to those of GT plans.Significance. Local anatomical information contains most of the information that DL models need to predict fluence maps for clinically acceptable OAR sparing. Input features from beam angles are needed to achieve the best PTV coverage. These results provide valuable insights for further improvement of DL-FMP models and DL models in general.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
7.
Radiat Oncol ; 17(1): 82, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443714

RESUMO

BACKGROUND: Robotic linac is ideally suited to deliver hypo-fractionated radiotherapy due to its compact head and flexible positioning. The non-coplanar treatment space improves the delivery versatility but the complexity also leads to prolonged optimization and treatment time. METHODS: In this study, we attempted to use the deep learning (pytorch) framework for the plan optimization of circular cone based robotic radiotherapy. The optimization problem was topologized into a simple feedforward neural network, thus the treatment plan optimization was transformed into network training. With this transformation, the pytorch toolkit with high-efficiency automatic differentiation (AD) for gradient calculation was used as the optimization solver. To improve the treatment efficiency, plans with fewer nodes and beams were sought. The least absolute shrinkage and selection operator (lasso) and the group lasso were employed to address the "sparsity" issue. RESULTS: The AD-S (AD sparse) approach was validated on 6 brain and 6 liver cancer cases and the results were compared with the commercial MultiPlan (MLP) system. It was found that the AD-S plans achieved rapid dose fall-off and satisfactory sparing of organs at risk (OARs). Treatment efficiency was improved by the reduction in the number of nodes (28%) and beams (18%), and monitor unit (MU, 24%), respectively. The computational time was shortened to 47.3 s on average. CONCLUSIONS: In summary, this first attempt of applying deep learning framework to the robotic radiotherapy plan optimization is promising and has the potential to be used clinically.


Assuntos
Radioterapia de Intensidade Modulada , Procedimentos Cirúrgicos Robóticos , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
8.
J Radiosurg SBRT ; 8(1): 21-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387408

RESUMO

Purpose: The epidural space is a frequent site of cancer recurrence after spine stereotactic radiosurgery (SSRS). This may be due to microscopic disease in the epidural space which is underdosed to obey strict spinal cord dose constraints. We hypothesized that the epidural space could be purposefully irradiated to prescription dose levels, potentially reducing the risk of recurrence in the epidural space without increasing toxicity. Methods and materials: SSRS clinical treatment plans with spinal cord contours, spinal planning target volumes (PTVspine), and delivered dose distributions were retrospectively identified. An epidural space PTV (PTVepidural) was contoured to avoid the spinal cord and focus on regions near the PTVspine. Clinical plan constraints included PTVspine constraints (D95% and D5%, based on prescription dose) and spinal cord constraints (Dmax < 1300 cGy, D10% < 1000 cGy). Plans were revised with three prescriptions of 1800, 2000 and 2400 cGy in two sets, with one set of revisions (supplemented plans) designed to additionally target the PTVepidural by optimizing PTVepidural D95% in addition to meeting every clinical plan constraint. Clinical and revised plans were compared according to their PTVepidural DVH distributions, and D95% distributions. Results: Seventeen SSRS plans meeting the above criteria were identified. Supplemented plans had higher doses to the epidural low-dose regions at all prescription levels. Epidural PTV D95% values for the supplemented plans were all statistically significantly different from the values of the base plans (p < 10-4). The epidural PTV D95% increases depended on the initial prescription, increasing from 11.52 to 16.90 Gy, 12.23 to 18.85 Gy, and 13.87 to 19.54 Gy for target prescriptions of 1800, 2000 and 2400 cGy, respectively. Conclusions: Purposefully targeting the epidural space in SSRS may increase control in the epidural space without significantly increasing the risk of spinal cord toxicity. A clinical trial of this approach should be considered.

9.
Quant Imaging Med Surg ; 11(12): 4835-4846, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34888193

RESUMO

BACKGROUND: Artificial intelligence (AI) based radiotherapy treatment planning tools have gained interest in automating the treatment planning process. It is essential to understand their overall robustness in various clinical scenarios. This is an existing gap between many AI based tools and their actual clinical deployment. This study works to fill the gap for AI based treatment planning by investigating a clinical robustness assessment (CRA) tool for the AI based planning methods using a phantom simulation approach. METHODS: A cylindrical phantom was created in the treatment planning system (TPS) with the axial dimension of 30 cm by 18 cm. Key structures involved in pancreas stereotactic body radiation therapy (SBRT) including PTV25, PTV33, C-Loop, stomach, bowel and liver were created within the phantom. Several simulation scenarios were created to mimic multiple scenarios of anatomical changes, including displacement, expansion, rotation and combination of three. The goal of treatment planning was to deliver 25 Gy to PTV25 and 33 Gy to PTV33 in 5 fractions in simultaneous integral boost (SIB) manner while limiting luminal organ-at-risk (OAR) max dose to be under 29 Gy. A previously developed deep learning based AI treatment planning tool for pancreas SBRT was identified as the validation object. For each scenario, the anatomy information was fed into the AI tool and the final fluence map associated to the plan was generated, which was subsequently sent to TPS for leaf sequencing and dose calculation. The final auto plan's quality was analyzed against the treatment planning constraint. The final plans' quality was further analyzed to evaluate potential correlation with anatomical changes using the Manhattan plot. RESULTS: A total of 32 scenarios were simulated in this study. For all scenarios, the mean PTV25 V25Gy of the AI based auto plans was 96.7% while mean PTV33 V33Gy was 82.2%. Large variation (16.3%) in PTV33 V33Gy was observed due to anatomical variations, a.k.a. proximity of luminal structure to PTV33. Mean max dose was 28.55, 27.68 and 24.63 Gy for C-Loop, bowel and stomach, respectively. Using D0.03cc as max dose surrogate, the value was 28.03, 27.12 and 23.84 Gy for C-Loop, bowel and stomach, respectively. Max dose constraint of 29 Gy was achieved for 81.3% cases for C-Loop and stomach, and 78.1% for bowel. Using D0.03cc as max dose surrogate, the passing rate was 90.6% for C-Loop, and 81.3% for bowel and stomach. Manhattan plot revealed high correlation between the OAR over dose and the minimal distance between the PTV33 and OAR. CONCLUSIONS: The results showed promising robustness of the pancreas SBRT AI tool, providing important evidence of its readiness for clinical implementation. The established workflow could guide the process of assuring clinical readiness of future AI based treatment planning tools.

10.
Quant Imaging Med Surg ; 11(12): 4859-4880, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34888195

RESUMO

Artificial intelligence (AI) refers to methods that improve and automate challenging human tasks by systematically capturing and applying relevant knowledge in these tasks. Over the past decades, a number of approaches have been developed to address different types and needs of system intelligence ranging from search strategies to knowledge representation and inference to robotic planning. In the context of radiation treatment planning, multiple AI approaches may be adopted to improve the planning quality and efficiency. For example, knowledge representation and inference methods may improve dose prescription by integrating and reasoning about the domain knowledge described in many clinical guidelines and clinical trials reports. In this review, we will focus on the most studied AI approach in intensity modulated radiation therapy (IMRT)/volumetric modulated arc therapy (VMAT)-machine learning (ML) and describe our recent efforts in applying ML to improve the quality, consistency, and efficiency of IMRT/VMAT planning. With the available high-quality data, we can build models to accurately predict critical variables for each step of the planning process and thus automate and improve its outcomes. Specific to the IMRT/VMAT planning process, we can build models for each of the four critical components in the process: dose-volume histogram (DVH), Dose, Fluence, and Human Planner. These models can be divided into two general groups. The first group focuses on encoding prior experience and knowledge through ML and more recently deep learning (DL) from prior clinical plans and using these models to predict the optimal DVH (DVH prediction model), or 3D dose distribution (dose prediction model), or fluence map (fluence map model). The goal of these models is to reduce or remove the trial-and-error process and guarantee consistently high-quality plans. The second group of models focuses on mimicking human planners' decision-making process (planning strategy model) during the iterative adjustments/guidance of the optimization engine. Each critical step of the IMRT/VMAT treatment planning process can be improved and automated by AI methods. As more training data becomes available and more sophisticated models are developed, we can expect that the AI methods in treatment planning will continue to improve accuracy, efficiency, and robustness.

11.
Phys Med Biol ; 66(24)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34808605

RESUMO

Objective:To design a deep transfer learning framework for modeling fluence map predictions for stereotactic body radiation therapy (SBRT) of adrenal cancer and similar sites that usually have a small number of cases.Approach:We developed a transfer learning framework for adrenal SBRT planning that leverages knowledge in a pancreas SBRT planning model. Treatment plans from the two sites had different dose prescriptions and beam settings but both prioritized gastrointestinal sparing. A base framework was first trained with 100 pancreas cases. This framework consists of two convolutional neural networks (CNN), which predict individual beam doses (BD-CNN) and fluence maps (FM-CNN) sequentially for 9-beam intensity-modulated radiation therapy (IMRT) plans. Forty-five adrenal plans were split into training/validation/test sets with the ratio of 20/10/15. The base BD-CNN was re-trained with transfer learning using 5/10/15/20 adrenal training cases to produce multiple candidate adrenal BD-CNN models. The base FM-CNN was directly used for adrenal cases. The deep learning (DL) plans were evaluated by several clinically relevant dosimetric endpoints, producing a percentage score relative to the clinical plans.Main results:Transfer learning significantly reduced the number of training cases and training time needed to train such a DL framework. The adrenal transfer learning model trained with 5/10/15/20 cases achieved validation plan scores of 85.4/91.2/90.7/89.4, suggesting that model performance saturated with 10 training cases. Meanwhile, a model using all 20 adrenal training cases without transfer learning only scored 80.5. For the final test set, the 5/10/15/20-case models achieved scores of 73.5/75.3/78.9/83.3.Significance:It is feasible to use deep transfer learning to train an IMRT fluence prediction framework. This technique could adapt to different dose prescriptions and beam configurations. This framework potentially enables DL modeling for clinical sites that have a limited dataset, either due to few cases or due to rapid technology evolution.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Aprendizado de Máquina , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
12.
Biomed Phys Eng Express ; 8(1)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34731837

RESUMO

Deep learning algorithms for radiation therapy treatment planning automation require large patient datasets and complex architectures that often take hundreds of hours to train. Some of these algorithms require constant dose updating (such as with reinforcement learning) and may take days. When these algorithms rely on commerical treatment planning systems to perform dose calculations, the data pipeline becomes the bottleneck of the entire algorithm's efficiency. Further, uniformly accurate distributions are not always needed for the training and approximations can be introduced to speed up the process without affecting the outcome. These approximations not only speed up the calculation process, but allow for custom algorithms to be written specifically for the purposes of use in AI/ML applications where the dose and fluence must be calculated a multitude of times for a multitude of different situations. Here we present and investigate the effect of introducing matrix sparsity through kernel truncation on the dose calculation for the purposes of fluence optimzation within these AI/ML algorithms. The basis for this algorithm relies on voxel discrimination in which numerous voxels are pruned from the computationally expensive part of the calculation. This results in a significant reduction in computation time and storage. Comparing our dose calculation against calculations in both a water phantom and patient anatomy in Eclipse without heterogenity corrections produced gamma index passing rates around 99% for individual and composite beams with uniform fluence and around 98% for beams with a modulated fluence. The resulting sparsity introduces a reduction in computational time and space proportional to the square of the sparsity tolerance with a potential decrease in cost greater than 10 times that of a dense calculation allowing not only for faster caluclations but for calculations that a dense algorithm could not perform on the same system.


Assuntos
Algoritmos , Planejamento da Radioterapia Assistida por Computador , Aprendizado Profundo , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada
13.
Phys Med Biol ; 66(23)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757945

RESUMO

Purpose.We have previously reported an artificial intelligence (AI) agent that automatically generates intensity-modulated radiation therapy (IMRT) plans via fluence map prediction, by-passing inverse planning. This AI agent achieved clinically comparable quality for prostate cases, but its performance on head-and-neck patients leaves room for improvement. This study aims to collect insights of the deep-learning-based (DL-based) fluence map prediction model by systematically analyzing its prediction errors.Methods.From the modeling perspective, the DL model's output is the fluence maps of IMRT plans. However, from the clinical planning perspective, the plan quality evaluation should be based on the clinical dosimetric criteria such as dose-volume histograms. To account for the complex and non-intuitive relationships between fluence map prediction errors and the corresponding dose distribution changes, we propose a novel error analysis approach that systematically examines plan dosimetric changes that are induced by varying amounts of fluence prediction errors. We investigated four decomposition modes of model prediction errors. The two spatial domain decompositions are based on fluence intensity and fluence gradient. The two frequency domain decompositions are based on Fourier-space banded frequency rings and Fourier-space truncated low-frequency disks. The decomposed error was analyzed for its impact on the resulting plans' dosimetric metrics. The analysis was conducted on 15 test cases spared from the 200 training and 16 validation cases used to train the model.Results.Most planning target volume metrics were significantly correlated with most error decompositions. The Fourier space disk radii had the largest Spearman's coefficients. The low-frequency region within a disk of ∼20% Fourier space contained most of errors that impact overall plan quality.Conclusions.This study demonstrates the feasibility of using fluence map prediction error analysis to understand the AI agent's performance. Such insights will help fine-tune the DL models in architecture design and loss function selection.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Inteligência Artificial , Humanos , Masculino , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
14.
Med Phys ; 48(11): 7493-7503, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34482556

RESUMO

PURPOSE: The safety and clinical efficacy of 125 I seed-loaded stent for the treatment of portal vein tumor thrombosis (PVTT) have been shown. Accurate and fast dose calculation of the 125 I seeds with the presence of the stent is necessary for the plan optimization and evaluation. However, the dosimetric characteristics of the seed-loaded stents remain unclear and there is no fast dose calculation technique available. This paper aims to explore a fast and accurate analytical dose calculation method based on Monte Carlo (MC) dose calculation, which takes into account the effect of stent and tissue inhomogeneity. METHODS: A detailed model of the seed-loaded stent was developed using 3D modeling software and subsequently used in MC simulations to calculate the dose distribution around the stent. The dose perturbation caused by the presence of the stent was analyzed, and dose perturbation kernels (DPKs) were derived and stored for future use. Then, the dose calculation method from AAPM TG-43 was adapted by integrating the DPK and appropriate inhomogeneity correction factors (ICF) to calculate dose distributions analytically. To validate the proposed method, several comparisons were performed with other methods in water phantom and voxelized CT phantoms for three patients. RESULTS: The stent has a considerable dosimetric effect reducing the dose up to 47.2% for single-seed stent and 11.9%-16.1% for 16-seed stent. In a water phantom, dose distributions from MC simulations and TG-43-DP-ICF showed a good agreement with the relative error less than 3.3%. In voxelized CT phantoms, taking MC results as the reference, the relative errors of TG-43 method can be up to 33%, while those of TG-43-DP-ICF method were less than 5%. For a dose matrix with 256 × 256 × 46 grid (corresponding to a phantom of 17.2 × 17.2 × 11.5 cm3 ) for 16-seed-loaded stent, it only takes 17 s for TG-43-DP-ICF to compute, compared to 25 h for the full MC calculation. CONCLUSIONS: The combination of DPK and inhomogeneity corrections is an effective approach to handle both the presence of stent and tissue heterogeneity. Exhibiting good agreement with MC calculation and computational efficiency, the proposed TG-43-DP-ICF method is adequate for dose evaluation and optimization in seed-loaded stent implantation treatment planning.


Assuntos
Braquiterapia , Radiometria , Algoritmos , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Stents
15.
Adv Radiat Oncol ; 6(4): 100698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409205

RESUMO

PURPOSE: Our purpose was to describe preliminary dosimetric and clinical results of a recumbent total skin electron beam therapy (TSEBT) technique and compare this to a conventional standing TSEBT technique. METHODS AND MATERIALS: A customized treatment platform with recessed side wheels was constructed and commissioned for patients to be treated in a recumbent position. Dosimetric and clinical information was collected for patients treated with this new recumbent technique in addition to that of a cohort of patients treated contemporaneously using the conventional standing method. Dose delivery and clinical outcomes were compared for patients treated with the recumbent and standing techniques. RESULTS: Between 2017 and 2019, 27 patients were treated with TSEBT with the recumbent (n = 13) or conventional standing technique (n = 14) at our institution. Measured dose at 15 body sites could be directly compared. Of these, 10 showed no significant difference between the two techniques while five sites showed significant differences in median measured dose, including the top of left shoulder, right biceps, bend of left elbow, upper back, and medial right thigh (P < .003). Measured dose was significantly higher with the standing technique at these sites with the exception of the upper back. Rates of complete response (25% vs 23%), partial response (50% vs 69%), and stable disease (17% vs 8%) were similar between the standing and recumbent cohorts, respectively (P = .78). CONCLUSIONS: We have developed, commissioned, and implemented a floor-based, recumbent technique that allows for treatment of patients who would otherwise not be eligible for TSEBT. Dosimetric and clinical measurements suggest that this technique is a viable alternative to the standing method.

16.
Adv Radiat Oncol ; 6(4): 100672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997484

RESUMO

PURPOSE: Treatment planning for pancreas stereotactic body radiation therapy (SBRT) is a challenging task, especially with simultaneous integrated boost treatment approaches. We propose a deep learning (DL) framework to accurately predict fluence maps from patient anatomy and directly generate intensity modulated radiation therapy plans. METHODS AND MATERIALS: The framework employs 2 convolutional neural networks (CNNs) to sequentially generate beam dose prediction and fluence map prediction, creating a deliverable 9-beam intensity modulated radiation therapy plan. Within the beam dose prediction CNN, axial slices of combined structure contour masks are used to predict 3-dimensional (3D) beam doses for each beam. Each 3D beam dose is projected along its beam's-eye-view to form a 2D beam dose map, which is subsequently used by the fluence map prediction CNN to predict its fluence map. Finally, the 9 predicted fluence maps are imported into the treatment planning system to finalize the plan by leaf sequencing and dose calculation. One hundred patients receiving pancreas SBRT were retrospectively collected for this study. Benchmark plans with unified simultaneous integrated boost prescription (25/33 Gy) were manually optimized for each case. The data set was split into 80/20 cases for training and testing. We evaluated the proposed DL framework by assessing both the fluence maps and the final predicted plans. Further, clinical acceptability of the plans was evaluated by a physician specializing in gastrointestinal cancer. RESULTS: The DL-based planning was, on average, completed in under 2 minutes. In testing, the predicted plans achieved similar dose distribution compared with the benchmark plans (-1.5% deviation for planning target volume 33 V33Gy), with slightly higher planning target volume maximum (+1.03 Gy) and organ at risk maximum (+0.95 Gy) doses. After renormalization, the physician rated 19 cases clinically acceptable and 1 case requiring minor improvement. CONCLUSIONS: The DL framework can effectively plan pancreas SBRT cases within 2 minutes. The predicted plans are clinically deliverable, with plan quality approaching that of manual planning.

17.
J Magn Reson Imaging ; 54(3): 880-887, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33694250

RESUMO

BACKGROUND: Differential diagnosis of primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is useful to guide treatment strategies. PURPOSE: To investigate the use of a convolutional neural network (CNN) model for differentiation of PCNSL and GBM without tumor delineation. STUDY TYPE: Retrospective. POPULATION: A total of 289 patients with PCNSL (136) or GBM (153) were included, the average age of the cohort was 54 years, and there were 173 men and 116 women. FIELD STRENGTH/SEQUENCE: 3.0 T Axial contrast-enhanced T1 -weighted spin-echo inversion recovery sequence (CE-T1 WI), T2 -weighted fluid-attenuation inversion recovery sequence (FLAIR), and diffusion weighted imaging (DWI, b = 0 second/mm2 , 1000 seconds/mm2 ). ASSESSMENT: A single-parametric CNN model was built using CE-T1 WI, FLAIR, and the apparent diffusion coefficient (ADC) map derived from DWI, respectively. A decision-level fusion based multi-parametric CNN model (DF-CNN) was built by combining the predictions of single-parametric CNN models through logistic regression. An image-level fusion based multi-parametric CNN model (IF-CNN) was built using the integrated multi-parametric MR images. The radiomics models were developed. The diagnoses by three radiologists with 6 years (junior radiologist Y.Y.), 11 years (intermediate-level radiologist Y.T.), and 21 years (senior radiologist Y.L.) of experience were obtained. STATISTICAL ANALYSIS: The 5-fold cross validation was used for model evaluation. The Pearson's chi-squared test was used to compare the accuracies. U-test and Fisher's exact test were used to compare clinical characteristics. RESULTS: The CE-T1 WI, FLAIR, and ADC based single-parametric CNN model had accuracy of 0.884, 0.782, and 0.700, respectively. The DF-CNN model had an accuracy of 0.899 which was higher than the IF-CNN model (0.830, P = 0.021), but had no significant difference in accuracy compared to the radiomics model (0.865, P = 0.255), and the senior radiologist (0.906, P = 0.886). DATA CONCLUSION: A CNN model can differentiate PCNSL from GBM without tumor delineation, and comparable to the radiomics models and radiologists. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 2.


Assuntos
Aprendizado Profundo , Glioblastoma , Linfoma , Sistema Nervoso Central , Diagnóstico Diferencial , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Linfoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Estudos Retrospectivos
18.
Med Phys ; 48(6): 2714-2723, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33577108

RESUMO

PURPOSE: To develop an artificial intelligence (AI) agent for fully automated rapid head-and-neck intensity-modulated radiation therapy (IMRT) plan generation without time-consuming dose-volume-based inverse planning. METHODS: This AI agent was trained via implementing a conditional generative adversarial network (cGAN) architecture. The generator, PyraNet, is a novel deep learning network that implements 28 classic ResNet blocks in pyramid-like concatenations. The discriminator is a customized four-layer DenseNet. The AI agent first generates multiple customized two-dimensional projections at nine template beam angles from a patient's three-dimensional computed tomography (CT) volume and structures. These projections are then stacked as four-dimensional inputs of PyraNet, from which nine radiation fluence maps of the corresponding template beam angles are generated simultaneously. Finally, the predicted fluence maps are automatically postprocessed by Gaussian deconvolution operations and imported into a commercial treatment planning system (TPS) for plan integrity check and visualization. The AI agent was built and tested upon 231 oropharyngeal IMRT plans from a TPS plan library. 200/16/15 plans were assigned for training/validation/testing, respectively. Only the primary plans in the sequential boost regime were studied. All plans were normalized to 44 Gy prescription (2 Gy/fx). A customized Harr wavelet loss was adopted for fluence map comparison during the training of the PyraNet. For test cases, isodose distributions in AI plans and TPS plans were qualitatively evaluated for overall dose distributions. Key dosimetric metrics were compared by Wilcoxon signed-rank tests with a significance level of 0.05. RESULTS: All 15 AI plans were successfully generated. Isodose gradients outside of PTV in AI plans were comparable to those of the TPS plans. After PTV coverage normalization, Dmean of left parotid (DAI  = 23.1 ± 2.4 Gy; DTPS  = 23.1 ± 2.0 Gy), right parotid (DAI  = 23.8 ± 3.0 Gy; DTPS  = 23.9 ± 2.3 Gy), and oral cavity (DAI  = 24.7 ± 6.0 Gy; DTPS  = 23.9 ± 4.3 Gy) in the AI plans and the TPS plans were comparable without statistical significance. AI plans achieved comparable results for maximum dose at 0.01cc of brainstem (DAI  = 15.0 ± 2.1 Gy; DTPS  = 15.5 ± 2.7 Gy) and cord + 5mm (DAI  = 27.5 ± 2.3 Gy; DTPS  = 25.8 ± 1.9 Gy) without clinically relevant differences, but body Dmax results (DAI  = 121.1 ± 3.9 Gy; DTPS  = 109.0 ± 0.9 Gy) were higher than the TPS plan results. The AI agent needed ~3 s for predicting fluence maps of an IMRT plan. CONCLUSIONS: With rapid and fully automated execution, the developed AI agent can generate complex head-and-neck IMRT plans with acceptable dosimetry quality. This approach holds great potential for clinical applications in preplanning decision-making and real-time planning.


Assuntos
Radioterapia de Intensidade Modulada , Inteligência Artificial , Humanos , Glândula Parótida , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
J Magn Reson Imaging ; 53(1): 242-250, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32864825

RESUMO

BACKGROUND: Preoperative differentiation of primary central nervous system lymphoma (PCNSL) from glioblastoma (GBM) is important to guide neurosurgical decision-making. PURPOSE: To validate the generalization ability of radiomics models based on multiparametric-MRI (MP-MRI) for differentiating PCNSL from GBM. STUDY TYPE: Retrospective. POPULATION: In all, 240 patients with GBM (n = 129) or PCNSL (n = 111). FIELD STRENGTH/SEQUENCE: 3.0T scanners (two vendors). Sequences: fluid-attenuation inversion recovery, diffusion-weighted imaging (DWI), and contrast-enhanced T1 -weighted imaging (CE-T1 WI). Apparent diffusion coefficients (ADCs) were derived from DWI. ASSESSMENT: Cross-vendor and mixed-vendor validation were conducted. In cross-vendor validation, the training set was 149 patients' data from vendor 1, and test set was 91 patients' data from vendor 2. In mixed-vendor validation, a training set was 80% of data from both vendors, and the test set remained at 20% of data. Single and multisequence radiomics models were built. The diagnoses by radiologists with 5, 10, and 20 years' experience were obtained. The integrated models were built combining the diagnoses by the best-performing radiomics model and each radiologist. Model performance was validated in the test set using area under the ROC curve (AUC). Histological results were used as the reference standard. STATISTICAL TESTS: DeLong test: differences between AUCs. U-test: differences of numerical variables. Fisher's exact test: differences of categorical variables. RESULTS: In cross-vendor and mixed-vendor validation, the combination of CE-T1 WI and ADC produced the best-performing radiomics model, with AUC of 0.943 vs. 0.935, P = 0.854. The integrated models had higher AUCs than radiologists, with 5 (0.975 vs. 0.891, P = 0.002 and 0.995 vs. 0.885, P = 0.007), 10 (0.975 vs. 0.913, P = 0.029 and 0.995 vs. 0.900, P = 0.030), and 20 (0.975 vs. 0.945, P = 0.179 and 0.995 vs. 0.923, P = 0.046) years' experiences. DATA CONCLUSION: Radiomics for differentiating PCNSL from GBM was generalizable. The model combining MP-MRI and radiologists' diagnoses had superior performance compared to the radiologists alone. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Glioblastoma , Linfoma , Imageamento por Ressonância Magnética Multiparamétrica , Sistema Nervoso Central , Glioblastoma/diagnóstico por imagem , Humanos , Linfoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
20.
Int J Radiat Oncol Biol Phys ; 109(4): 1076-1085, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33115686

RESUMO

PURPOSE: Pancreas stereotactic body radiation therapy (SBRT) treatment planning requires planners to make sequential, time-consuming interactions with the treatment planning system to reach the optimal dose distribution. We sought to develop a reinforcement learning (RL)-based planning bot to systematically address complex tradeoffs and achieve high plan quality consistently and efficiently. METHODS AND MATERIALS: The focus of pancreas SBRT planning is finding a balance between organ-at-risk sparing and planning target volume (PTV) coverage. Planners evaluate dose distributions and make planning adjustments to optimize PTV coverage while adhering to organ-at-risk dose constraints. We formulated such interactions between the planner and treatment planning system into a finite-horizon RL model. First, planning status features were evaluated based on human planners' experience and defined as planning states. Second, planning actions were defined to represent steps that planners would commonly implement to address different planning needs. Finally, we derived a reward system based on an objective function guided by physician-assigned constraints. The planning bot trained itself with 48 plans augmented from 16 previously treated patients, and generated plans for 24 cases in a separate validation set. RESULTS: All 24 bot-generated plans achieved similar PTV coverages compared with clinical plans while satisfying all clinical planning constraints. Moreover, the knowledge learned by the bot could be visualized and interpreted as consistent with human planning knowledge, and the knowledge maps learned in separate training sessions were consistent, indicating reproducibility of the learning process. CONCLUSIONS: We developed a planning bot that generates high-quality treatment plans for pancreas SBRT. We demonstrated that the training phase of the bot is tractable and reproducible, and the knowledge acquired is interpretable. As a result, the RL planning bot can potentially be incorporated into the clinical workflow and reduce planning inefficiencies.


Assuntos
Neoplasias Pancreáticas/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Conhecimento , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...