Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(41): 13279-13288, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198678

RESUMO

In the present study, we demonstrated that whether the gut microbiota and related metabolites contribute to the therapeutic effect of total sesquiterpenoids (TSs) from loquat leaves on obesity. A 4-week high fat diet was used to induce obesity which was then treated with TSs for another 4 weeks. TSs remarkedly reduced the weight of body and white adipose and the levels of total cholesterol (TC) and triglyceride (TG) in serum. We also found that TSs restored the diversity and richness of gut microbiota. In addition, TSs administration affected the relative abundance of seven key genera. Meanwhile, TSs were determined to affect the metabolism of the host through detecting the metabolites in feces. By applying KEGG and the correlation analysis with gut microbiota, 10 differential metabolites were identified to be the key. The results in this work proved that TSs inhibited obesity by remodeling gut microbiota and related metabolites.


Assuntos
Eriobotrya , Obesidade , Folhas de Planta , Sesquiterpenos , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Eriobotrya/química , Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/etiologia , Obesidade/prevenção & controle , Folhas de Planta/química , Sesquiterpenos/farmacologia , Triglicerídeos/sangue , Animais , Camundongos , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806399

RESUMO

Bisdemethoxycurcumin (BDMC), a principal and active component of edible turmeric, was previously found to have beneficial effects on metabolic diseases. Chronic kidney disease (CKD) may benefit from its potential therapeutic use. Using a high-fat diet (HFD)-fed mouse model, we examined the effects of BDMC on renal injury and tried to determine how its associated mechanism works. A number of metabolic disorders are significantly improved by BDMC, including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia and inflammation. Further research on renal histopathology and function showed that BDMC could repair renal pathological changes and enhance renal function. Moreover, decreased serum malondialdehyde (MDA), elevated superoxide dismutase (SOD) activity, and the inhibition of renal reactive oxygen species (ROS) overproduction revealed the alleviation of oxidative stress after BDMC administration. In addition, renal Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway was activated in BDMC-treated mice. In conclusion, these findings demonstrated BDMC as a potential therapy for HFD-induced CKD via the activation of the Keap1/Nrf2 pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Insuficiência Renal Crônica , Animais , Camundongos , Diarileptanoides , Dieta Hiperlipídica/efeitos adversos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais
3.
Food Funct ; 13(3): 1519-1534, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35072186

RESUMO

According to ancient records, loquat leaf has been used as both a food and medicine in China for thousands of years. Sesquiterpene glycosides from loquat leaf have achieved remarkable effects on hyperglycemia. However, their specific activities and underlying mechanisms on type 2 diabetes mellitus (T2DM) are not fully understood. In the present study, we found that SG1, a unique sesquiterpene glycoside isolated from loquat leaf, had the capability to prevent insulin resistance and inflammation. In db/db mice, SG1 administration (25 and 50 mg kg-1 day-1) inhibited hyperglycemia and the release of inflammatory cytokines. To further explore the possible role of gut microbiota in SG1 for treating T2DM, we applied 16S rRNA pyrosequencing based on the V3-V4 region to analyze the fecal samples of different groups. Alpha diversity analysis showed that SG1 administration could obviously increase diversity and richness in db/db mice. At the phylum level, due to SG1 treatment, the relative abundance of Firmicutes and Actinobacteria was lowered while that of Bacteroidetes was raised. Additionally, 7 key genera in the db/db mice with SG1 supplementation were enriched: Lactobacillus, Lachnospiraceae_NK4A136_group, and Ruminococcus, Bacteroides, Prevotellaceae_UCG-001, Alistipes, and Roseburia. These findings proved that SG1 could prevent T2DM by relieving insulin resistance and inflammation and by remodeling the gut microbiota in db/db mice.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Eriobotrya , Glicosídeos/farmacologia , Hipoglicemiantes/farmacologia , Sesquiterpenos/farmacologia , Animais , Glicemia , Alimento Funcional , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Folhas de Planta
4.
Oxid Med Cell Longev ; 2021: 4706410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745416

RESUMO

Loquat (Eriobotrya japonica Lindl.), a subtropical fruit tree native to Asia, is not only known to be nutritive but also beneficial for the treatment of diabetes in the south of China. To expand its development, this study was undertaken concerning the potential therapeutic role of total sesquiterpene glycosides (TSGs) from loquat leaves in insulin resistance (IR), the major causative factor of type 2 diabetes mellitus (T2DM). Male C57BL/6 mice were fed on high-fat diet (HFD) to induce IR and then were given TSG by oral administration at 25 and 100 mg/kg/day, respectively. TSG notably improved metabolic parameters including body weight, serum glucose, and insulin levels and prevented hepatic injury. Moreover, inflammatory response and oxidative stress were found to be remarkably alleviated in IR mice with TSG supplement. Further research in liver of IR mice demonstrated that TSG repaired the signalings of insulin receptor substrate-1 (IRS-1)/glucose transporter member 4 (GLUT4) and AMP-activated protein kinase (AMPK), which improved glucose and lipid metabolism and prevented lipid accumulation in liver. It was also observed that TSG suppressed the expression of transient receptor potential vanilloid 1 (TRPV1), whereas the signaling pathway of sirtuin-6 (SIRT6)/nuclear factor erythroid 2-related factor 2 (Nrf2) was significantly promoted. Based on the results, the current study demonstrated that TSG from loquat leaves potentially ameliorated IR in vivo by enhancing IRS-1/GLUT4 signaling and AMPK activation and modulating TRPV1 and SIRT6/Nrf2 signaling pathways.


Assuntos
Dieta Hiperlipídica , Eriobotrya/química , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosídeos/farmacocinética , Hiperglicemia/prevenção & controle , Hiperlipidemias/prevenção & controle , Resistência à Insulina , Animais , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta , Sesquiterpenos/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
5.
J Agric Food Chem ; 69(47): 14176-14191, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783554

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is strongly associated with type 2 diabetes mellitus (T2DM). Sesquiterpene glycosides from loquat leaf achieved beneficial effects on metabolic syndromes such as NAFLD and diabetes; however, their specific activity and underlying mechanism on T2DM-associated NAFLD have not yet been fully understood. In the present study, we found that sesquiterpene glycoside 3 (SG3), a novel sesquiterpene glycoside isolated from loquat leaf, was able to prevent insulin resistance (IR), oxidative stress, and inflammation. In db/db mice, SG3 administration (25 and 50 mg/kg/day) inhibited obesity, hyperglycemia, and the release of inflammatory cytokines. SG3 (5 and 10 µM) also significantly alleviated hepatic lipid accumulation, oxidative stress, and inflammatory response induced by high glucose combined with oleic acid in HepG2 cells. Western blotting analysis showed that these effects were related to repair the abnormal insulin signaling and inhibit the cytochrome P450 2E1 (CYP2E1) and NOD-like receptor family pyrin domain-containing 3 (NLRP3), both in vivo and in vitro. In addition, SG3 treatment could decrease the ratio of Firmicutes/Bacteroidetes and increase the relative abundance of Lachnospiraceae, Muribaculaceae, and Lactobacillaceae after a high-throughput pyrosequencing of 16S rRNA to observe the changes of related gut microbial composition in db/db mice. These findings proved that SG3 could protect against NAFLD in T2DM by improving IR, oxidative stress, inflammation through regulating insulin signaling and inhibiting CYP2E1/NLRP3 pathways, and remodeling the mouse gut microbiome. It is suggested that SG3 could be considered as a new functional additive for a healthy diet.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Sesquiterpenos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicosídeos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , RNA Ribossômico 16S , Sesquiterpenos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-17354839

RESUMO

Ultrasound is a universal guidance tool for many medical procedures, whereas it is of poor image quality and resolution. Merging high-contrast image information from other image modalities enhances the guidance capability of ultrasound. However, few registration methods work well for it. In this paper we present a surface-to-image registration technique for mono- or multimodal medical data concerning ultrasound. This approach is able to automatically register the object surface to its counterpart in image volume. Three similarity measurements are investigated in the rigid registration experiments of the pubic arch in transrectal ultrasound images. It shown that the selection of the similarity function is related to the ultrasound characteristics of the object to be registered.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Sínfise Pubiana/anatomia & histologia , Sínfise Pubiana/diagnóstico por imagem , Técnica de Subtração , Ultrassonografia/métodos , Algoritmos , Inteligência Artificial , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...