Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(12): e23313, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962238

RESUMO

Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.


Assuntos
Implantação do Embrião , Útero , Animais , Feminino , Humanos , Camundongos , Gravidez , Implantação do Embrião/genética , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Útero/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1229033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664846

RESUMO

Endometrial function is dependent on a tight crosstalk between the epithelial and stromal cells of the endometrium. This communication is critical to ensure a fertile uterus and relies on progesterone and estrogen signaling to prepare a receptive uterus for embryo implantation in early pregnancy. One of the key mediators of this crosstalk is the orphan nuclear receptor NR2F2, which regulates uterine epithelial receptivity and stromal cell differentiation. In order to determine the molecular mechanism regulated by NR2F2, RNAseq analysis was conducted on the uterus of PgrCre;Nr2f2f/f mice at Day 3.5 of pregnancy. This transcriptomic analysis demonstrated Nr2f2 ablation in Pgr-expressing cells leads to a reduction of Hand2 expression, increased levels of Hand2 downstream effectors Fgf1 and Fgf18, and a transcriptome manifesting suppressed progesterone signaling with an altered immune baseline. ChIPseq analysis conducted on the Day 3.5 pregnant mouse uterus for NR2F2 demonstrated the majority of NR2F2 occupies genomic regions that have H3K27ac and H3K4me1 histone modifications, including the loci of major uterine transcription regulators Hand2, Egr1, and Zbtb16. Furthermore, functional analysis of an NR2F2 occupying site that is conserved between human and mouse was capable to enhance endogenous HAND2 mRNA expression with the CRISPR activator in human endometrial stroma cells. These data establish the NR2F2 dependent regulation of Hand2 in the stroma and identify a cis-acting element for this action. In summary, our findings reveal a role of the NR2F2-HAND2 regulatory axis that determines the uterine transcriptomic pattern in preparation for the endometrial receptivity.


Assuntos
Progesterona , Útero , Feminino , Humanos , Gravidez , Animais , Camundongos , Progesterona/farmacologia , Transdução de Sinais , Endométrio , Receptores Nucleares Órfãos , Fator II de Transcrição COUP
3.
Nat Commun ; 14(1): 4605, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528140

RESUMO

Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Gravidez , Feminino , Humanos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/metabolismo , Útero/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Epitélio/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
4.
FASEB J ; 37(8): e23103, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489832

RESUMO

Receptors for estrogen and progesterone frequently interact, via Cohesin/CTCF loop extrusion, at enhancers distal from regulated genes. Loss-of-function CTCF mutation in >20% of human endometrial tumors indicates its importance in uterine homeostasis. To better understand how CTCF-mediated enhancer-gene interactions impact endometrial development and function, the Ctcf gene was selectively deleted in female reproductive tissues of mice. Prepubertal Ctcfd/d uterine tissue exhibited a marked reduction in the number of uterine glands compared to those without Ctcf deletion (Ctcff/f mice). Post-pubertal Ctcfd/d uteri were hypoplastic with significant reduction in both the amount of the endometrial stroma and number of glands. Transcriptional profiling revealed increased expression of stem cell molecules Lif, EOMES, and Lgr5, and enhanced inflammation pathways following Ctcf deletion. Analysis of the response of the uterus to steroid hormone stimulation showed that CTCF deletion affects a subset of progesterone-responsive genes. This finding indicates (1) Progesterone-mediated signaling remains functional following Ctcf deletion and (2) certain progesterone-regulated genes are sensitive to Ctcf deletion, suggesting they depend on gene-enhancer interactions that require CTCF. The progesterone-responsive genes altered by CTCF ablation included Ihh, Fst, and Errfi1. CTCF-dependent progesterone-responsive uterine genes enhance critical processes including anti-tumorigenesis, which is relevant to the known effectiveness of progesterone in inhibiting progression of early-stage endometrial tumors. Overall, our findings reveal that uterine Ctcf plays a key role in progesterone-dependent expression of uterine genes underlying optimal post-pubertal uterine development.


Assuntos
Cromatina , Neoplasias do Endométrio , Humanos , Feminino , Animais , Camundongos , Progesterona , Útero , Endométrio
5.
Front Reprod Health ; 4: 1033581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505394

RESUMO

Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. Clinical and cell-based studies as well as investigations on mice have demonstrated pivotal roles for each SRC in numerous physiological and pathophysiological contexts, underscoring their functional pleiotropy. We previously demonstrated the critical involvement of SRC-2 in murine embryo implantation as well as in human endometrial stromal cell (HESC) decidualization, a cellular transformation process required for trophoblast invasion and ultimately placentation. We show here that, like SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments of the human endometrium during the proliferative and secretory phase of the menstrual cycle as well as in cultured HESCs. We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. These molecular findings are supported at the cellular level by the inability of HESCs to morphologically transform from a stromal fibroblastoid cell to an epithelioid decidual cell when endogenous SRC-3 levels are markedly reduced. To identify genes, signaling pathways and networks that are controlled by SRC-3 and potentially important for hormone-dependent decidualization, we performed RNA-sequencing on HESCs in which SRC-3 levels were significantly reduced at the time of administering the deciduogenic stimulus. Comparing HESC controls with HESCs deficient in SRC-3, gene enrichment analysis of the differentially expressed gene set revealed an overrepresentation of genes involved in chromatin remodeling, cell proliferation/motility, and programmed cell death. These predictive bioanalytic results were confirmed by the demonstration that SRC-3 is required for the expansion, migratory and invasive activities of the HESC population, cellular properties that are required in vivo in the formation or functioning of the decidua. Collectively, our results support SRC-3 as an important coregulator in HESC decidualization. Since perturbation of normal homeostatic levels of SRC-3 is linked with common gynecological disorders diagnosed in reproductive age women, this endometrial coregulator-along with its new molecular targets described here-may open novel clinical avenues in the diagnosis and/or treatment of a non-receptive endometrium, particularly in patients presenting non-aneuploid early pregnancy loss.

6.
F S Sci ; 3(4): 349-366, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089208

RESUMO

OBJECTIVE: To systematically analyze the cell composition and transcriptome of primary human endometrial stromal cells (HESCs) and transformed human endometrial stromal cells (THESCs). DESIGN: The primary HESCs from 3 different donors and 1 immortalized THESC were collected from the human endometrium at the midsecretory phase and cultured in vitro. SETTING: Academic research laboratory. PATIENT(S): None. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Single-cell ribonucleic acid sequencing analysis. RESULT(S): We found the individual differences among the primary HESCs and bigger changes between the primary HESCs and THESCs. Cell clustering with or without integration identified cell clusters belonging to mature, proliferative, and active fibroblasts that were conserved across all samples at different stages of the cell cycles with intensive cell communication signals. All primary HESCs and THESCs can be correlated with some subpopulations of fibroblasts in the human endometrium. CONCLUSION(S): Our study indicated that the primary HESCs and THESCs displayed conserved cell characters and distinct cell clusters. Mature, proliferative, and active fibroblasts at different stages or cell cycles were detected across all samples and presented with a complex cell communication network. The cultured HESCs and THESCs retained the features of some subpopulations within the human endometrium.


Assuntos
Endométrio , Células Estromais , Feminino , Humanos , Endométrio/metabolismo , Células Estromais/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Transcriptoma
7.
PNAS Nexus ; 1(4): pgac155, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36120506

RESUMO

The uterine myometrium expands and maintains contractile quiescence before parturition. While the steroid hormone progesterone blocks labor, the role of progesterone signaling in myometrial expansion remains elusive. This study investigated the myometrial functions of the progesterone receptor, PGR. Pgr ablation in mouse smooth muscle leads to subfertility, oviductal embryo retention, and impaired myometrial adaptation to pregnancy. While gross morphology between mutant and control uteri are comparable, mutant uteri manifest a decrease of 76.6% oxytocin-stimulated contractility in a pseudopregnant context with a reduced expression of intracellular calcium homeostasis genes including Pde5a and Plcb4. At mid-pregnancy, the mutant myometrium exhibits discontinuous myofibers and disarrayed extracellular matrix at the conceptus site. Transcriptome of the mutant mid-pregnant uterine wall manifests altered muscle and extracellular matrix profiles and resembles that of late-pregnancy control tissues. A survey of PGR occupancy, H3K27ac histone marks, and chromatin looping annotates cis-acting elements that may direct gene expression of mid-pregnancy uteri for uterine remodeling. Further analyses suggest that major muscle and matrix regulators Myocd and Ccn2 and smooth muscle building block genes are PGR direct downstream targets. Cataloging enhancers that are topologically associated with progesterone downstream genes reveals distinctive patterns of transcription factor binding motifs in groups of enhancers and identifies potential regulatory partners of PGR outside its occupying sites. Finally, conserved correlations are found between estimated PGR activities and RNA abundance of downstream muscle and matrix genes in human myometrial tissues. In summary, PGR is pivotal to direct the molecular program for the uterus to remodel and support pregnancy.

8.
J Steroid Biochem Mol Biol ; 224: 106160, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931328

RESUMO

Myometrial contraction is stringently controlled throughout pregnancy and parturition. Progesterone signaling, effecting through the progesterone receptor (PR), is pivotal in modulating uterine activity. Evidence has shown that two major PR isoforms, PR-A and PR-B, have distinct activities on gene regulation, and the ratio between these isoforms determines the contractility of the myometrium at different gestational stages. Herein, we focus on the regulation of PR activity in the myometrium, especially the differential actions of the two PR isoforms, which maintain uterine quiescence during pregnancy and regulate the switch to a contractile state at the onset of labor. To demonstrate the PR regulatory network and its mechanisms of actions on myometrial activity, we summarized the findings into three parts: Regulation of PR Expression and Isoform Levels, Progesterone Receptor Interacting Factors, and Biological Processes Regulated by Myometrial Progesterone Receptor Isoforms. Recent genomic and epigenomic data, from human specimens and mouse models, are recruited to support the existing knowledge and offer new insights and future directions in myometrial biology.


Assuntos
Contração Muscular , Miométrio , Parto , Gravidez , Receptores de Progesterona , Animais , Feminino , Humanos , Camundongos , Gravidez/genética , Gravidez/metabolismo , Miométrio/metabolismo , Parto/genética , Parto/metabolismo , Progesterona/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Contração Muscular/genética
9.
Endocrinology ; 163(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35895287

RESUMO

Endometrial health is affected by molecular processes that underlie estrogen responses. We assessed estrogen regulation of endometrial function by integrating the estrogen receptor α (ESR1) cistromes and transcriptomes of endometrial biopsies taken from the proliferative and mid-secretory phases of the menstrual cycle together with hormonally stimulated endometrial epithelial organoids. The cycle stage-specific ESR1 binding sites were determined by chromatin immunoprecipitation and next-generation sequencing and then integrated with changes in gene expression from RNA sequencing data to infer candidate ESR1 targets in normal endometrium. Genes with ESR1 binding in whole endometrium were enriched for chromatin modification and regulation of cell proliferation. The distribution of ESR1 binding sites in organoids was more distal from gene promoters when compared to primary endometrium and was more similar to the proliferative than the mid-secretory phase ESR1 cistrome. Inferred organoid estrogen/ESR1 candidate target genes affected formation of cellular protrusions and chromatin modification. Comparison of signaling effected by candidate ESR1 target genes in endometrium vs organoids reveals enrichment of both overlapping and distinct responses. Our analysis of the ESR1 cistromes and transcriptomes from endometrium and organoids provides important resources for understanding how estrogen affects endometrial health and function.


Assuntos
Receptor alfa de Estrogênio , Organoides , Cromatina/genética , Cromatina/metabolismo , Endométrio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Ciclo Menstrual/fisiologia , Organoides/metabolismo
10.
Cells ; 11(11)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681455

RESUMO

For pregnancy to be established, uterine cells respond to the ovarian hormones, estrogen, and progesterone, via their nuclear receptors, the estrogen receptor (ESR1) and progesterone receptor (PGR). ESR1 and PGR regulate genes by binding chromatin at genes and at distal enhancer regions, which interact via dynamic 3-dimensional chromatin structures. Endometrial epithelial cells are the initial site of embryo attachment and invasion, and thus understanding the processes that yield their receptive state is important. Here, we cultured and treated organoids derived from human epithelial cells, isolated from endometrial biopsies, with estrogen and progesterone and evaluated their transcriptional profiles, their PGR cistrome, and their chromatin conformation. Progesterone attenuated estrogen-dependent gene responses but otherwise minimally impacted the organoid transcriptome. PGR ChIPseq peaks were co-localized with previously described organoid ESR1 peaks, and most PGR and ESR1 peaks were in B (inactive) compartment regions of chromatin. Significantly more ESR1 peaks were assigned to estrogen-regulated genes by considering chromatin loops identified using HiC than were identified using ESR1 peak location relative to closest genes. Overall, the organoids model allowed a definition of the chromatin regulatory components governing hormone responsiveness.


Assuntos
Organoides , Progesterona , Cromatina/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Organoides/metabolismo , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Receptores de Estrogênio/metabolismo
11.
Genesis ; 60(4-5): e23473, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35475540

RESUMO

An estimated 75% of unsuccessful pregnancies are due to implantation failure. Investigating the causes of implantation failure is difficult as decidualization and embryo implantation is a dynamic process. Here, we describe a new decidua-specific iCre recombinase mouse strain. Utilizing CRISPR/Cas9-based genome editing, a mouse strain was developed that expresses iCre recombinase under the control of the endogenous prolactin family 8, subfamily a, member 2 (Prl8a2) promoter. iCre recombinase activity was examined by crossing with mTmG/+ or Sun1-GFP reporter alleles. iCre activity initiated reporter expression at gestational day 5.5 in the primary decidual zone and continued into mid-gestation (gestational day 9.5), with expression highly concentrated in the anti-mesometrial region. No reporter expression was observed in the ovary, oviduct, pituitary, or skeletal muscle, supporting the tissue specificity of the Prl8a2iCre in the primary decidual zone. This novel iCre line will be a valuable tool for in vivo genetic manipulation and lineage tracing to investigate functions of genetic networks and cellular dynamics associated with decidualization and infertility.


Assuntos
Integrases , Prolactina , Animais , Decídua/metabolismo , Feminino , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Gravidez , Prolactina/genética , Recombinação Genética
12.
Biol Reprod ; 107(2): 529-545, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35357464

RESUMO

Uterine dysfunctions lead to fertility disorders and pregnancy complications. Normal uterine functions at pregnancy depend on crosstalk among multiple cell types in uterine microenvironments. Here, we performed the spatial transcriptomics and single-cell RNA-seq assays to determine local gene expression profiles at the embryo implantation site of the mouse uterus on pregnancy day 7.5 (D7.5). The spatial transcriptomic annotation identified 11 domains of distinct gene signatures, including a mesometrial myometrium, an anti-mesometrial myometrium, a mesometrial decidua enriched with natural killer cells, a vascular sinus zone for maternal vessel remodeling, a fetal-maternal interface, a primary decidual zone, a transition decidual zone, a secondary decidual zone, undifferentiated stroma, uterine glands, and the embryo. The scRNA-Seq identified 12 types of cells in the D7.5 uterus including three types of stromal fibroblasts with differentiated and undifferentiated markers, one cluster of epithelium including luminal and glandular epithelium, mesothelium, endothelia, pericytes, myelomonocytic cell, natural killer cells, and lymphocyte B. These single-cell RNA signatures were then utilized to deconvolute the cell-type compositions of each individual uterine microenvironment. Functional annotation assays on spatial transcriptomic data revealed uterine microenvironments with distinguished metabolic preferences, immune responses, and various cellular behaviors that are regulated by region-specific endocrine and paracrine signals. Global interactome among regions is also projected based on the spatial transcriptomic data. This study provides high-resolution transcriptome profiles with locality information at the embryo implantation site to facilitate further investigations on molecular mechanisms for normal pregnancy progression.


Assuntos
Transcriptoma , Útero , Animais , Decídua/fisiologia , Implantação do Embrião/genética , Epitélio , Feminino , Células Matadoras Naturais , Camundongos , Miométrio , Gravidez , Útero/metabolismo
13.
Front Genet ; 12: 727532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899830

RESUMO

Gene expression is controlled by multiple regulators and their interactions. Data from genome-wide gene expression assays can be used to estimate molecular activities of regulators within a model organism and extrapolate them to biological processes in humans. This approach is valuable in studies to better understand complex human biological systems which may be involved in diseases and hence, have potential clinical relevance. In order to achieve this, it is necessary to infer gene interactions that are not directly observed (i.e. latent or hidden) by way of structural equation modeling (SEM) on the expression levels or activities of the downstream targets of regulator genes. Here we developed an R Shiny application, termed "Structural Equation Modeling of In silico Perturbations (SEMIPs)" to compute a two-sided t-statistic (T-score) from analysis of gene expression data, as a surrogate to gene activity in a given human specimen. SEMIPs can be used in either correlational studies between outcome variables of interest or subsequent model fitting on multiple variables. This application implements a 3-node SEM model that consists of two upstream regulators as input variables and one downstream reporter as an outcome variable to examine the significance of interactions among these variables. SEMIPs enables scientists to investigate gene interactions among three variables through computational and mathematical modeling (i.e. in silico). In a case study using SEMIPs, we have shown that putative direct downstream genes of the GATA Binding Protein 2 (GATA2) transcription factor are sufficient to infer its activities in silico for the conserved progesterone receptor (PGR)-GATA2-SRY-box transcription factor 17 (SOX17) genetic network in the human uterine endometrium.

14.
iScience ; 24(12): 103487, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34934913

RESUMO

The loss of uterine epithelial progesterone receptor (PGR) is crucial for successful embryo implantation in both humans and mice. The two major isoforms PGRA and PGRB have divergent functions under both physiological and pathological conditions. The present study compares phenotypes and gene signatures of PGRA and PGRB in uterine epithelium using uterine epithelial-specific constitutively expressed PGRA or PGRB mouse models. The cistrome and transcriptome analysis reveals substantial overlap between epithelial PGRA and PGRB, and both disrupt embryo implantation through FOXO1 pathways. Constitutive epithelial PGRA and PGRB expression impairs ESR1 occupancy at the promoter of Lif leading to reduced Lif transcription and further exaggerates SGK1 expression leading to enhanced PI3K-SGK1 activities, and both contribute to the decline of nuclear FOXO1 expression. Our study demonstrates that PGRA and PGRB in the uterine epithelium act on a similar set of target genes and commonly regulate the LIF-SGK1-FOXO1 signaling pathway for embryo implantation.

15.
J Clin Endocrinol Metab ; 106(9): 2547-2565, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34058008

RESUMO

CONTEXT: Suboptimal endometrial thickening is associated with lower pregnancy rates and occurs in some infertile women treated with clomiphene. OBJECTIVE: To examine cellular and molecular differences in the endometrium of women with suboptimal vs optimal endometrial thickening following clomiphene. METHODS: Translational prospective cohort study from 2018 to 2020 at a university-affiliated clinic. Reproductive age women with unexplained infertility treated with 100 mg of clomiphene on cycle days 3 to 7 who developed optimal (≥8mm; n = 6, controls) or suboptimal (<6mm; n = 7, subjects) endometrial thickness underwent preovulatory blood and endometrial sampling. The main outcome measures were endometrial tissue architecture, abundance and location of specific proteins, RNA expression, and estrogen receptor (ER) α binding. RESULTS: The endometrium of suboptimal subjects compared with optimal controls was characterized by a reduced volume of glandular epithelium (16% vs 24%, P = .01), decreased immunostaining of markers of proliferation (PCNA, ki67) and angiogenesis (PECAM-1), increased immunostaining of pan-leukocyte marker CD45 and ERß, but decreased ERα immunostaining (all P < .05). RNA-seq identified 398 differentially expressed genes between groups. Pathway analysis of differentially expressed genes indicated reduced proliferation (Z-score = -2.2, P < .01), decreased angiogenesis (Z-score = -2.87, P < .001), increased inflammation (Z-score = +2.2, P < .01), and ERß activation (Z-score = +1.6, P < .001) in suboptimal subjects. ChIP-seq identified 6 genes bound by ERα that were differentially expressed between groups (P < .01), some of which may play a role in implantation. CONCLUSION: Women with suboptimal endometrial thickness after clomiphene exhibit aberrant ER expression patterns, architectural changes, and altered gene and protein expression suggesting reduced proliferation and angiogenesis in the setting of increased inflammation.


Assuntos
Clomifeno/efeitos adversos , Endométrio/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Adulto , Proliferação de Células/efeitos dos fármacos , Endométrio/patologia , Estrogênios/fisiologia , Feminino , Hormônios Esteroides Gonadais/sangue , Humanos , Receptores de Estrogênio/análise
16.
Front Immunol ; 12: 638381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868265

RESUMO

While oxidative stress has been linked to multiple sclerosis (MS), the role of superoxide-producing phagocyte NADPH oxidase (Nox2) in central nervous system (CNS) pathogenesis remains unclear. This study investigates the impact of Nox2 gene ablation on pro- and anti-inflammatory cytokine and chemokine production in a mouse experimental autoimmune encephalomyelitis (EAE) model. Nox2 deficiency attenuates EAE-induced neural damage and reduces disease severity, pathogenic immune cells infiltration, demyelination, and oxidative stress in the CNS. The number of autoreactive T cells, myeloid cells, and activated microglia, as well as the production of cytokines and chemokines, including GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10, were much lower in the Nox2-/- CNS tissues but remained unaltered in the peripheral lymphoid organs. RNA-seq profiling of microglial transcriptome identified a panel of Nox2 dependent proinflammatory genes: Pf4, Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9. Furthermore, gene ontology and pathway enrichment analyses revealed that microglial Nox2 plays a regulatory role in multiple pathways known to be important for MS/EAE pathogenesis, including STAT3, glutathione, leukotriene biosynthesis, IL-8, HMGB1, NRF2, systemic lupus erythematosus in B cells, and T cell exhaustion signaling. Taken together, our results provide new insights into the critical functions performed by microglial Nox2 during the EAE pathogenesis, suggesting that Nox2 inhibition may represent an important therapeutic target for MS.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Microglia/metabolismo , NADPH Oxidase 2/metabolismo , Estresse Oxidativo/fisiologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/imunologia
17.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33707208

RESUMO

Uterine contractile dysfunction leads to pregnancy complications such as preterm birth and labor dystocia. In humans, it is hypothesized that progesterone receptor isoform PGR-B promotes a relaxed state of the myometrium, and PGR-A facilitates uterine contraction. This hypothesis was tested in vivo using transgenic mouse models that overexpress PGR-A or PGR-B in smooth muscle cells. Elevated PGR-B abundance results in a marked increase in gestational length compared to control mice (21.1 versus 19.1 d respectively, P < 0.05). In both ex vivo and in vivo experiments, PGR-B overexpression leads to prolonged labor, a significant decrease in uterine contractility, and a high incidence of labor dystocia. Conversely, PGR-A overexpression leads to an increase in uterine contractility without a change in gestational length. Uterine RNA sequencing at midpregnancy identified 1,174 isoform-specific downstream targets and 424 genes that are commonly regulated by both PGR isoforms. Gene signature analyses further reveal PGR-B for muscle relaxation and PGR-A being proinflammatory. Elevated PGR-B abundance reduces Oxtr and Trpc3 and increases Plcl2 expression, which manifests a genetic profile of compromised oxytocin signaling. Functionally, both endogenous PLCL2 and its paralog PLCL1 can attenuate uterine muscle cell contraction in a CRISPRa-based assay system. These findings provide in vivo support that PGR isoform levels determine distinct transcriptomic landscapes and pathways in myometrial function and labor, which may help further the understanding of abnormal uterine function in the clinical setting.


Assuntos
Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Receptores de Ocitocina/genética , Receptores de Progesterona/fisiologia , Canais de Cátion TRPC/genética , Contração Uterina/genética , Animais , Feminino , Camundongos , Camundongos Mutantes , Parto/fisiologia , Gravidez , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transcriptoma
18.
Sci Signal ; 13(652)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023986

RESUMO

Differences in the relative abundances of the progesterone receptor (PGR) isoforms PGRA and PGRB are often observed in women with reproductive tract cancers. To assess the importance of the PGR isoform ratio in the maintenance of the reproductive tract, we generated mice that overexpress PGRA or PGRB in all PGR-positive tissues. Whereas few PGRA-overexpressing mice developed reproductive tract tumors, all PGRB-overexpressing mice developed ovarian neoplasms that were derived from ovarian luteal cells. Transcriptomic analyses of the ovarian tumors from PGRB-overexpressing mice revealed enhanced AKT signaling and a gene expression signature similar to those of human ovarian and endometrial cancers. Treating PGRB-overexpressing mice with the PGR antagonist RU486 stalled tumor growth and decreased the expression of cell cycle-associated genes, indicating that tumor growth and cell proliferation were hormone dependent in addition to being isoform dependent. Analysis of the PGRB cistrome identified binding events at genes encoding proteins that are critical regulators of mitotic phase entry. This work suggests a mechanism whereby an increase in the abundance of PGRB relative to that of PGRA drives neoplasia in vivo by stimulating cell cycling.


Assuntos
Perfilação da Expressão Gênica/métodos , Hormônios/metabolismo , Neoplasias Ovarianas/genética , Receptores de Progesterona/genética , Transcriptoma/genética , Animais , Proliferação de Células/genética , Modelos Animais de Doenças , Estradiol/sangue , Estradiol/metabolismo , Feminino , Hormônios/sangue , Humanos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Neoplasias Ovarianas/metabolismo , Progesterona/sangue , Progesterona/metabolismo , Receptores de Progesterona/metabolismo
19.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33048843

RESUMO

WNK1 (with no lysine [K] kinase 1) is an atypical kinase protein ubiquitously expressed in humans and mice. A mutation in its encoding gene causes hypertension in humans, which is associated with abnormal ion homeostasis. WNK1 is critical for in vitro decidualization in human endometrial stromal cells, thereby demonstrating its importance in female reproduction. Using a mouse model, WNK1 was ablated in the female reproductive tract to define its in vivo role in uterine biology. Loss of WNK1 altered uterine morphology, causing endometrial epithelial hyperplasia, adenomyotic features, and a delay in embryo implantation, ultimately resulting in compromised fertility. Combining transcriptomic, proteomic, and interactomic analyses revealed a potentially novel regulatory pathway whereby WNK1 represses AKT phosphorylation through protein phosphatase 2A (PP2A) in endometrial cells from both humans and mice. We show that WNK1 interacted with PPP2R1A, the alpha isoform of the PP2A scaffold subunit. This maintained the levels of PP2A subunits and stabilized its activity, which then dephosphorylated AKT. Therefore, loss of WNK1 reduced PP2A activity, causing AKT hypersignaling. Using FOXO1 as a readout of AKT activity, we demonstrate that there was escalated FOXO1 phosphorylation and nuclear exclusion, leading to a disruption in the expression of genes that are crucial for embryo implantation.


Assuntos
Proteína Forkhead Box O1/metabolismo , Homeostase , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reprodução , Útero/fisiologia , Proteína Quinase 1 Deficiente de Lisina WNK/fisiologia , Animais , Feminino , Proteína Forkhead Box O1/genética , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Gravidez , Proteína Fosfatase 2/genética , Proteoma , Proteínas Proto-Oncogênicas c-akt/genética , Transcriptoma
20.
Biol Reprod ; 103(5): 951-965, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32948877

RESUMO

The transcription factor forkhead box L2 (FOXL2) regulates sex differentiation and reproductive function. Elevated levels of this transcription factor have been observed in the diseases of the uterus, such as endometriosis. However, the impact of elevated FOXL2 expression on uterine physiology remains unknown. In order to determine the consequences of altered FOXL2 in the female reproductive axis, we generated mice with over-expression of FOXL2 (FOXL2OE) by crossing Foxl2LsL/+ with the Progesterone receptor Pgrcre model. FOXL2OE uterus showed severe morphological abnormality including abnormal epithelial stratification, blunted adenogenesis, increased endometrial fibrosis, and disrupted myometrial morphology. In contrast, increasing FOXL2 levels specifically in uterine epithelium by crossing the Foxl2LsL/+ with the lactoferrin Ltficre mice resulted in the eFOXL2OE mice with uterine epithelial stratification but without defects in endometrial fibrosis and adenogenesis, demonstrating a role of the endometrial stroma in the uterine abnormalities of the FOXL2OE mice. Transcriptomic analysis of 12 weeks old Pgrcre and FOXL2OE uterus at diestrus stage showed multiple signaling pathways related with cellular matrix, wnt/ß-catenin, and altered cell cycle. Furthermore, we found FOXL2OE mice were sterile. The infertility was caused in part by a disruption of the hypophyseal ovarian axis resulting in an anovulatory phenotype. The FOXL2OE mice failed to show decidual responses during artificial decidualization in ovariectomized mice demonstrating the uterine contribution to the infertility phenotype. These data support that aberrantly increased FOXL2 expressions in the female reproductive tract can disrupt ovarian and uterine functions.


Assuntos
Proteína Forkhead Box L2/metabolismo , Anormalidades Urogenitais/metabolismo , Útero/anormalidades , Útero/metabolismo , Animais , Endométrio/metabolismo , Feminino , Proteína Forkhead Box L2/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transdução de Sinais/fisiologia , Transcriptoma , Anormalidades Urogenitais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...