Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 73(3): 470-484, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38050068

RESUMO

OBJECTIVE: Metastasis is the major cause of cancer death. However, what types of heterogenous cancer cells in primary tumour and how they metastasise to the target organs remain largely undiscovered. DESIGN: We performed single-cell RNA sequencing and spatial transcriptomic analysis in primary colorectal cancer (CRC) and metastases in the liver (lCRC) or ovary (oCRC). We also conducted immunofluorescence staining and functional experiments to examine the mechanism. RESULTS: Integrative analyses of epithelial cells reveal a stem-like cell cluster with high protein tyrosine phosphatase receptor type O (PTPRO) and achaete scute-like 2 (ASCL2) expression as the metastatic culprit. This cell cluster comprising distinct subpopulations shows distinct liver or ovary metastatic preference. Population 1 (P1) cells with high delta-like ligand 4 (DLL4) and MAF bZIP transcription factor A (MAFA) expression are enriched in primary CRC and oCRC, thus may be associated with ovarian metastasis. P3 cells having a similar expression pattern as cholangiocytes are found mainly in primary CRC and lCRC, presuming to be likely the culprits that specifically metastasise to the liver. Stem-like cells interacted with cancer-associated fibroblasts and endothelial cells via the DLL4-NOTCH signalling pathway to metastasise from primary CRC to the ovary. In the oCRC microenvironment, myofibroblasts provide cancer cells with glutamine and perform a metabolic reprogramming, which may be essential for cancer cells to localise and develop in the ovary. CONCLUSION: We uncover a mechanism for organ-specific CRC metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Feminino , Humanos , Neoplasias Colorretais/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neoplasias Hepáticas/patologia , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica/genética , Microambiente Tumoral/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Nat Genet ; 55(12): 2224-2234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957340

RESUMO

The biological functions of noncoding RNA N6-methyladenosine (m6A) modification remain poorly understood. In the present study, we depict the landscape of super-enhancer RNA (seRNA) m6A modification in pancreatic ductal adenocarcinoma (PDAC) and reveal a regulatory axis of m6A seRNA, H3K4me3 modification, chromatin accessibility and oncogene transcription. We demonstrate the cofilin family protein CFL1, overexpressed in PDAC, as a METTL3 cofactor that helps seRNA m6A methylation formation. The increased seRNA m6As are recognized by the reader YTHDC2, which recruits H3K4 methyltransferase MLL1 to promote H3K4me3 modification cotranscriptionally. Super-enhancers with a high level of H3K4me3 augment chromatin accessibility and facilitate oncogene transcription. Collectively, these results shed light on a CFL1-METTL3-seRNA m6A-YTHDC2/MLL1 axis that plays a role in the epigenetic regulation of local chromatin state and gene expression, which strengthens our knowledge about the functions of super-enhancers and their transcripts.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Cromatina/genética , RNA , Epigênese Genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Oncogenes/genética , Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...