Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Mol Neurobiol ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157119

RESUMO

Previous studies have shown that the C-C motif chemokine ligand 2 (CCL2) is widely expressed in the nervous system and involved in regulating the development of chronic pain and related anxiety-like behaviors, but its precise mechanism is still unclear. This paper provides an in-depth examination of the involvement of CCL2-CCR2 signaling in the anterior cingulate cortex (ACC) in intraplantar injection of complete Freund's adjuvant (CFA) leading to inflammatory pain and its concomitant anxiety-like behaviors by modulation of glutamatergic N-methyl-D-aspartate receptor (NMDAR). Our findings suggest that local bilateral injection of CCR2 antagonist in the ACC inhibits CFA-induced inflammatory pain and anxiety-like behavior. Meanwhile, the expression of CCR2 and CCL2 was significantly increased in ACC after 14 days of intraplantar injection of CFA, and CCR2 was mainly expressed in excitatory neurons. Whole-cell patch-clamp recordings showed that the CCR2 inhibitor RS504393 reduced the frequency of miniature excitatory postsynaptic currents (mEPSC) in ACC, and CCL2 was involved in the regulation of NMDAR-induced current in ACC neurons in the pathological state. In addition, local injection of the NR2B inhibitor of NMDAR subunits, Ro 25-6981, attenuated the effects of CCL2-induced hyperalgesia and anxiety-like behavior in the ACC. In summary, CCL2 acts on CCR2 in ACC excitatory neurons and participates in the regulation of CFA-induced pain and related anxiety-like behaviors through upregulation of NR2B. CCR2 in the ACC neuron may be a potential target for the treatment of chronic inflammatory pain and pain-related anxiety.

2.
Pharmacol Ther ; 251: 108539, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783347

RESUMO

Chronic pain is a frequent, distressing and poorly understood health problem. Plasticity of synaptic transmission in the nociceptive pathways after inflammation or injury is assumed to be an important cellular basis for chronic, pathological pain. Glutamate serves as the main excitatory neurotransmitter at key synapses in the somatosensory nociceptive pathways, in which it acts on both ionotropic and metabotropic glutamate receptors. Although conventionally postsynaptic, compelling anatomical and physiological evidence demonstrates the presence of presynaptic glutamate receptors in the nociceptive pathways. Presynaptic glutamate receptors play crucial roles in nociceptive synaptic transmission and plasticity. They modulate presynaptic neurotransmitter release and synaptic plasticity, which in turn regulates pain sensitization. In this review, we summarize the latest understanding of the expression of presynaptic glutamate receptors in the nociceptive pathways, and how they contribute to nociceptive information processing and pain hypersensitivity associated with inflammation / injury. We uncover the cellular and molecular mechanisms of presynaptic glutamate receptors in shaping synaptic transmission and plasticity to mediate pain chronicity, which may provide therapeutic approaches for treatment of chronic pain.


Assuntos
Dor Crônica , Ácido Glutâmico , Humanos , Ácido Glutâmico/metabolismo , Nociceptividade/fisiologia , Receptores Pré-Sinápticos , Receptores de Glutamato/fisiologia , Inflamação , Neurotransmissores
3.
Pain ; 164(11): 2447-2462, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326662

RESUMO

ABSTRACT: Patients with chronic pain often experience exaggerated pain response and aversive emotion, such as anxiety and depression. Central plasticity in the anterior cingulate cortex (ACC) is assumed to be a critical interface for pain perception and emotion, which has been reported to involve activation of NMDA receptors. Numerous studies have documented the key significance of cGMP-dependent protein kinase I (PKG-I) as a crucial downstream target for the NMDA receptor-NO-cGMP signaling cascade in regulating neuronal plasticity and pain hypersensitivity in specific regions of pain pathway, ie, dorsal root ganglion or spinal dorsal horn. Despite this, whether and how PKG-I in the ACC contributes to cingulate plasticity and comorbidity of chronic pain and aversive emotion has remained elusive. Here, we uncovered a crucial role of cingulate PKG-I in chronic pain and comorbid anxiety and depression. Chronic pain caused by tissue inflammation or nerve injury led to upregulation of PKG-I expression at both mRNA and protein levels in the ACC. Knockdown of ACC-PKG-I relieved pain hypersensitivity as well as pain-associated anxiety and depression. Further mechanistic analysis revealed that PKG-I might act to phosphorylate TRPC3 and TRPC6, leading to enhancement of calcium influx and neuronal hyperexcitability as well as synaptic potentiation, which results in the exaggerated pain response and comorbid anxiety and depression. We believe this study sheds new light on the functional capability of ACC-PKG-I in modulating chronic pain as well as pain-associated anxiety and depression. Hence, cingulate PKG-I may represent a new therapeutic target against chronic pain and pain-related anxiety and depression.

4.
Neural Regen Res ; 18(10): 2268-2277, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056147

RESUMO

Controlled cortical impingement is a widely accepted method to induce traumatic brain injury to establish a traumatic brain injury animal model. A strike depth of 1 mm at a certain speed is recommended for a moderate brain injury and a depth of > 2 mm is used to induce severe brain injury. However, the different effects and underlying mechanisms of these two model types have not been proven. This study investigated the changes in cerebral blood flow, differences in the degree of cortical damage, and differences in motor function under different injury parameters of 1 and 2 mm at injury speeds of 3, 4, and 5 m/s. We also explored the functional changes and mitochondrial damage between the 1 and 2 mm groups in the acute (7 days) and chronic phases (30 days). The results showed that the cerebral blood flow in the injured area of the 1 mm group was significantly increased, and swelling and bulging of brain tissue, increased vascular permeability, and large-scale exudation occurred. In the 2 mm group, the main pathological changes were decreased cerebral blood flow, brain tissue loss, and cerebral vasospasm occlusion in the injured area. Substantial motor and cognitive impairments were found on day 7 after injury in the 2 mm group; at 30 days after injury, the motor function of the 2 mm group mice recovered significantly while cognitive impairment persisted. Transcriptome sequencing showed that compared with the 1 mm group, the 2 mm group expressed more ferroptosis-related genes. Morphological changes of mitochondria in the two groups on days 7 and 30 using transmission electron microscopy revealed that on day 7, the mitochondria in both groups shrank and the vacuoles became larger; on day 30, the mitochondria in the 1 mm group became larger, and the vacuoles in the 2 mm group remained enlarged. By analyzing the proportion of mitochondrial subgroups in different groups, we found that the model mice had different patterns of mitochondrial composition at different time periods, suggesting that the difference in the degree of damage among traumatic brain injury groups may reflect the mitochondrial changes. Taken together, differences in mitochondrial morphology and function between the 1 and 2 mm groups provide a new direction for the accurate classification of traumatic brain injury. Our results provide reliable data support and evaluation methods for promoting the establishment of standard mouse controlled cortical impingement model guidelines.

5.
Neurosci Bull ; 39(9): 1348-1362, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36773215

RESUMO

The rostral agranular insular cortex (RAIC) has been associated with pain modulation. Although the endogenous cannabinoid system (eCB) has been shown to regulate chronic pain, the roles of eCBs in the RAIC remain elusive under the neuropathic pain state. Neuropathic pain was induced in C57BL/6 mice by common peroneal nerve (CPN) ligation. The roles of the eCB were tested in the RAIC of ligated CPN C57BL/6J mice, glutamatergic, or GABAergic neuron cannabinoid receptor 1 (CB1R) knockdown mice with the whole-cell patch-clamp and pain behavioral methods. The E/I ratio (amplitude ratio between mEPSCs and mIPSCs) was significantly increased in layer V pyramidal neurons of the RAIC in CPN-ligated mice. Depolarization-induced suppression of inhibition but not depolarization-induced suppression of excitation in RAIC layer V pyramidal neurons were significantly increased in CPN-ligated mice. The analgesic effect of ACEA (a CB1R agonist) was alleviated along with bilateral dorsolateral funiculus lesions, with the administration of AM251 (a CB1R antagonist), and in CB1R knockdown mice in GABAergic neurons, but not glutamatergic neurons of the RAIC. Our results suggest that CB1R activation reinforces the function of the descending pain inhibitory pathway via reducing the inhibition of glutamatergic layer V neurons by GABAergic neurons in the RAIC to induce an analgesic effect in neuropathic pain.


Assuntos
Analgesia , Neuralgia , Camundongos , Animais , Córtex Insular , Nervo Fibular , Camundongos Endogâmicos C57BL , Neurônios GABAérgicos , Analgésicos , Receptores de Canabinoides
6.
Neurosci Lett ; 778: 136603, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364125

RESUMO

During neurodevelopment, differentiation of neural stem/progenitor cells (NSPCs) into neurons are regulated by many factors including Notch signaling pathway. Herein, we report the effect of a Notch signaling blocker, i.e. γ -secretase inhibitor (GSI), on this differentiating process, especially on the morphological development. NSPCs were cultured and induced to differentiate with or without GSI. The neurite outgrowth was impeded by GSI application and the expression of a Notch signaling downstream effector miR-342-5p increased with the downregulated expression of Notch effectors Hes1 and Hes5. Upregulated expression of miR-342-5p in differentiating NSPCs could shorten the neurite length of progeny neurons, which was similar to the effect of GSI. To avoid the possible influence from astrocytes into neurons, we directly applied cultured neurons, on which GSI could shorten the processes and RBP-J knockdown could also reduce the neurite length. Similarly, transfection of miR-342-5p mimics or inhibitors into PC12 cells led to shorter or longer processes of cells compared with control ones. Furthermore, in differentiating NSPCs, GSI-induced shorter neurites could be partially rescued by miR-342-5p inhibitors, and STAT3 was one of the possible targets of miR-342-5p during this differentiating process as indicated by results of Western Blot test, luciferase reporter assay and GFP reporter assay. To further demonstrate the role of STAT3, it was introduced into GSI-treated neurons and the GSI-affected neurites could also be partially rescued. In conclusion, GSI could influence the morphological development of neurons and the possible mechanism involved Notch/miR-342-5p and STAT3. These results would be informative for future therapeutic research.


Assuntos
Inibidores e Moduladores de Secretases gama , MicroRNAs , Células-Tronco Neurais , Receptores Notch , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Inibidores e Moduladores de Secretases gama/farmacologia , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Ratos , Receptores Notch/metabolismo , Transdução de Sinais
7.
Nat Commun ; 13(1): 728, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132099

RESUMO

Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. However, how presynaptic NMDARs (PreNMDARs) in spinal nociceptor terminals control presynaptic plasticity and pain hypersensitivity has remained unclear. Here we report that PreNMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner. PreNMDARs depresses presynaptic transmission in basal state, while paradoxically causing presynaptic potentiation upon injury. This state-dependent modulation is dependent on Ca2+ influx via PreNMDARs. Small conductance Ca2+-activated K+ (SK) channels are responsible for PreNMDARs-mediated synaptic depression. Rather, tissue inflammation induces PreNMDARs-PKG-I-dependent BDNF secretion from spinal nociceptor terminals, leading to SK channels downregulation, which in turn converts presynaptic depression to potentiation. Our findings shed light on the state-dependent characteristics of PreNMDARs in spinal nociceptor terminals on modulating nociceptive transmission and revealed a mechanism underlying state-dependent transition. Moreover, we identify PreNMDARs in spinal nociceptor terminals as key constituents of activity-dependent pain sensitization.


Assuntos
Dor Crônica/fisiopatologia , Nociceptores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Dor Crônica/genética , Dor Crônica/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Inflamação , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Camundongos , Camundongos Transgênicos , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica
8.
Phytomedicine ; 96: 153910, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026502

RESUMO

BACKGROUND: Bone cancer pain (BCP) is one of the most severe complications in cancer patients. However, the pharmacological therapeutic approaches are limited. Luteolin, a major component of flavones, is widely distributed in plants and plays a critical role in the antinociceptive effects, but whether luteolin could alleviate cancer pain and its underlying mechanisms are not known. HYPOTHESIS/PURPOSE: This study investigated the molecular mechanisms by which luteolin reduced BCP. METHODS: Behavioral, pharmacological, immunohistochemical, and biochemical approaches were used to investigate the effect of luteolin on BCP. RESULTS: Luteolin treatment ameliorated Lewis lung cancer (LLC)-induced bone pain in mice in a dose-dependent manner. Luteolin treatment could inhibit the activation of neurons, glial cells, and NOD-like receptor protein 3 (NLRP3) inflammasomes in the dorsal spinal cord in the BCP mouse model. Furthermore, phosphorylated p-38 mitogen-activated protein kinase (MAPK) in the spinal dorsal horn (SDH) was suppressed by luteolin treatment that could influence the analgesic and glial inhibition effects of luteolin. CONCLUSION: Our results demonstrated that luteolin inhibited neuroinflammation by obstructing glial cell and NLRP3 inflammasome activation via modulating p38 MAPK activity in SDH, ultimately improving LLC-induced BCP.


Assuntos
Inflamassomos , Neoplasias Pulmonares , Animais , Humanos , Luteolina/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , Doenças Neuroinflamatórias , Dor , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal
9.
Neural Regen Res ; 17(8): 1814-1820, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017443

RESUMO

Neural stem cell (NSC) transplantation is a promising strategy for replacing lost neurons following spinal cord injury. However, the survival and differentiation of transplanted NSCs is limited, possibly owing to the neurotoxic inflammatory microenvironment. Because of the important role of glucose metabolism in M1/M2 polarization of microglia/macrophages, we hypothesized that altering the phenotype of microglia/macrophages by regulating the activity of aldose reductase (AR), a key enzyme in the polyol pathway of glucose metabolism, would provide a more beneficial microenvironment for NSC survival and differentiation. Here, we reveal that inhibition of host AR promoted the polarization of microglia/macrophages toward the M2 phenotype in lesioned spinal cord injuries. M2 macrophages promoted the differentiation of NSCs into neurons in vitro. Transplantation of NSCs into injured spinal cords either deficient in AR or treated with the AR inhibitor sorbinil promoted the survival and neuronal differentiation of NSCs at the injured spinal cord site and contributed to locomotor functional recovery. Our findings suggest that inhibition of host AR activity is beneficial in enhancing the survival and neuronal differentiation of transplanted NSCs and shows potential as a treatment of spinal cord injury.

10.
Med Sci Sports Exerc ; 54(4): 566-581, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935710

RESUMO

PURPOSE: Clinical studies found that regular aerobic exercise has analgesic and antianxiety effects; however, the underlying neural mechanisms remain unclear. Multiple studies have suggested that regular aerobic exercise may exert brain-protective effects by promoting the release of serotonin, which may be a pain modulator. Anterior cingulate cortex (ACC) is a key brain area for pain information processing, receiving dense serotonergic innervation. As a result, we hypothesized that exercise may increase the release of serotonin in the ACC, thus improving pain and anxiety behaviors. METHODS: Integrative methods were used, including behavioral, electrophysiological, pharmacological, biochemical, and genetic approaches, to explore the effects of regular aerobic exercise and the underlying neural mechanisms. RESULTS: Regular aerobic exercise in the form of voluntary wheel running for 30 min daily for 15 d showed significant effectiveness in relieving pain and concomitant anxiety in complete Freund's adjuvant-induced chronic inflammation pain models. c-Fos staining and multielectrode array recordings revealed alterations in neuronal activities and synaptic plasticity in the ACC. Moreover, systemic pharmacological treatment with 4-chloro-dl-phenylalanine (PCPA) to deplete endogenous serotonin and local delivery of serotonin to the ACC revealed that exercise-related serotonin release in the ACC bidirectionally modulates pain sensitization and anxiety behaviors by modulating synaptic plasticity in the ACC. Furthermore, we found that 5-HT1A and 5-HT7 receptors mediated the serotonin modulation effects under conditions of regular aerobic exercise through local infusion of a selective antagonist and shRNA in the ACC. CONCLUSIONS: Our results reveal that regular aerobic exercise can increase serotonin release and modulate synaptic plasticity in the ACC, ultimately improving pain and concomitant anxiety behaviors through the functions of the 5-HT1A and 5-HT7 receptors.


Assuntos
Dor Crônica , Serotonina , Animais , Ansiedade/terapia , Giro do Cíngulo , Humanos , Inflamação/induzido quimicamente , Camundongos , Atividade Motora , Plasticidade Neuronal/fisiologia
11.
Inquiry ; 58: 469580211056213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806458

RESUMO

We performed a pairwise and network meta-analysis to compare pathological complete response (pCR) among neoadjuvant chemotherapy in patients with triple-negative breast cancer. We searched PubMed for randomized clinical trials between January 1, 2000 and December 1, 2020. Abstracts from meetings were also searched. A frequentist random-effect model was applied to compare pCR and toxicities. The P-score was used to rank treatment effects. Nineteen trials with 16 treatments and 7794 patients were included. On the basis of SoC, the addition of carboplatin (OR = 1.82, 95% CI, 1.24 to 2.68, P < .01) and the addition of checkpoint inhibitors (OR = 1.69, 95% CI, 1.23 to 2.32, P < .01) increased pCR in pairwise meta-analysis; compared with paclitaxel, nab-paclitaxel did not improve pCR rates (OR = 1.81, 95% CI, .80 to 4.12, P = .16). The anthracycline-sparing regimen led to similar pCR compared with the anthracycline-containing regimen (OR = 1.50, 95% CI, .82 to 2.76, P = .19). In network meta-analysis, the addition of carboplatin plus a PD-1 inhibitor (pembrolizumab), carboplatin plus bevacizumab, and carboplatin plus veliparib ranked as the top three treatments for achieving pCR, with corresponding P-scores of .91, .84, and .72, respectively. Among patients with homologous recombination deficiency, the addition of carboplatin (OR = 1.31, 95% CI, .69 to 2.50, P = .41) or carboplatin plus PARP inhibitors (OR = 1.19, 95% CI, .58 to 2.47, P = .63) did not increase pCR. For triple-negative breast cancer, combining carboplatin with taxane-anthracycline-containing neoadjuvant chemotherapy could be the standard of care, and the combination containing checkpoint inhibitor is promising. However, their role in long-term oncologic outcome remains to be determined.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Carboplatina/uso terapêutico , Feminino , Humanos , Terapia Neoadjuvante , Metanálise em Rede , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
12.
Radiat Oncol ; 16(1): 201, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641928

RESUMO

PURPOSE: To develop a nomogram model for predicting local progress-free survival (LPFS) in esophageal squamous cell carcinoma (ESCC) patients treated with concurrent chemo-radiotherapy (CCRT). METHODS: We collected the clinical data of ESCC patients treated with CCRT in our hospital. Eligible patients were randomly divided into training cohort and validation cohort. The least absolute shrinkage and selection operator (LASSO) with COX regression was performed to select optimal radiomic features to calculate Rad-score for predicting LPFS in the training cohort. The univariate and multivariate analyses were performed to identify the predictive clinical factors for developing a nomogram model. The C-index was used to assess the performance of the predictive model and calibration curve was used to evaluate the accuracy. RESULTS: A total of 221 ESCC patients were included in our study, with 155 patients in training cohort and 66 patients in validation cohort. Seventeen radiomic features were selected by LASSO COX regression analysis to calculate Rad-score for predicting LPFS. The patients with a Rad-score ≥ 0.1411 had high risk of local recurrence, and those with a Rad-score < 0.1411 had low risk of local recurrence. Multivariate analysis showed that N stage, CR status and Rad-score were independent predictive factors for LPFS. A nomogram model was built based on the result of multivariate analysis. The C-index of the nomogram was 0.745 (95% CI 0.7700-0.790) in training cohort and 0.723(95% CI 0.654-0.791) in validation cohort. The 3-year LPFS rate predicted by the nomogram model was highly consistent with the actual 3-year LPFS rate both in the training cohort and the validation cohort. CONCLUSION: We developed and validated a prediction model based on radiomic features and clinical factors, which can be used to predict LPFS of patients after CCRT. This model is conducive to identifying the patients with ESCC benefited more from CCRT.


Assuntos
Quimiorradioterapia , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/terapia , Idoso , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nomogramas , Intervalo Livre de Progressão
13.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156983

RESUMO

Patients with neuropathic pain often experience comorbid psychiatric disorders. Cellular plasticity in the anterior cingulate cortex (ACC) is assumed to be a critical interface for pain perception and emotion. However, substantial efforts have thus far been focused on the intracellular mechanisms of plasticity rather than the extracellular alterations that might trigger and facilitate intracellular changes. Laminin, a key element of the extracellular matrix (ECM), consists of one α-, one ß-, and one γ-chain and is implicated in several pathophysiological processes. Here, we showed in mice that laminin ß1 (LAMB1) in the ACC was significantly downregulated upon peripheral neuropathy. Knockdown of LAMB1 in the ACC exacerbated pain sensitivity and induced anxiety and depression. Mechanistic analysis revealed that loss of LAMB1 caused actin dysregulation via interaction with integrin ß1 and the subsequent Src-dependent RhoA/LIMK/cofilin pathway, leading to increased presynaptic transmitter release probability and abnormal postsynaptic spine remodeling, which in turn orchestrated the structural and functional plasticity of pyramidal neurons and eventually resulted in pain hypersensitivity and anxiodepression. This study sheds new light on the functional capability of ECM LAMB1 in modulating pain plasticity and identifies a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified cingulate LAMB1/integrin ß1 signaling as a promising therapeutic target for the treatment of neuropathic pain and associated anxiodepression.


Assuntos
Ansiedade/metabolismo , Comportamento Animal , Depressão/metabolismo , Laminina/metabolismo , Neuralgia/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Ansiedade/genética , Depressão/genética , Feminino , Técnicas de Silenciamento de Genes , Giro do Cíngulo/metabolismo , Laminina/genética , Camundongos , Neuralgia/genética , Doenças do Sistema Nervoso Periférico/genética
14.
Rev Neurosci ; 32(8): 803-831, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-33781002

RESUMO

In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Células-Tronco Neurais , Animais , Endocanabinoides , Humanos , Interneurônios
15.
Pain ; 162(1): 135-151, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773598

RESUMO

Patients with neuropathic pain often experience exaggerated pain and anxiety. Central sensitization has been linked with the maintenance of neuropathic pain and may become an autonomous pain generator. Conversely, emerging evidence accumulated that central sensitization is initiated and maintained by ongoing nociceptive primary afferent inputs. However, it remains elusive what mechanisms underlie this phenomenon and which peripheral candidate contributes to central sensitization that accounts for pain hypersensitivity and pain-related anxiety. Previous studies have implicated peripherally localized cGMP-dependent protein kinase I (PKG-I) in plasticity of nociceptors and spinal synaptic transmission as well as inflammatory hyperalgesia. However, whether peripheral PKG-I contributes to cortical plasticity and hence maintains nerve injury-induced pain hypersensitivity and anxiety is unknown. Here, we demonstrated significant upregulation of PKG-I in ipsilateral L3 dorsal root ganglia (DRG), no change in L4 DRG, and downregulation in L5 DRG upon spared nerve injury. Genetic ablation of PKG-I specifically in nociceptors or post-treatment with intervertebral foramen injection of PKG-I antagonist, KT5823, attenuated the development and maintenance of spared nerve injury-induced bilateral pain hypersensitivity and anxiety. Mechanistic analysis revealed that activation of PKG-I in nociceptors is responsible for synaptic potentiation in the anterior cingulate cortex upon peripheral neuropathy through presynaptic mechanisms involving brain-derived neurotropic factor signaling. Our results revealed that PKG-I expressed in nociceptors is a key determinant for cingulate synaptic plasticity after nerve injury, which contributes to the maintenance of pain hypersensitivity and anxiety. Thereby, this study presents a strong basis for opening up a novel therapeutic target, PKG-I, in nociceptors for treatment of comorbidity of neuropathic pain and anxiety with least side effects.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Neuralgia , Sensibilização do Sistema Nervoso Central , Gânglios Espinais , Humanos , Hiperalgesia/etiologia , Neuralgia/etiologia , Nociceptores
16.
Neurosci Bull ; 37(4): 478-496, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33355899

RESUMO

Tweety-homolog 1 (Ttyh1) is expressed in neural tissue and has been implicated in the generation of several brain diseases. However, its functional significance in pain processing is not understood. By disrupting the gene encoding Ttyh1, we found a loss of Ttyh1 in nociceptors and their central terminals in Ttyh1-deficient mice, along with a reduction in nociceptor excitability and synaptic transmission at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) in the basal state. More importantly, the peripheral inflammation-evoked nociceptor hyperexcitability and spinal synaptic potentiation recorded in spinal-PAG projection neurons were compromised in Ttyh1-deficient mice. Analysis of the paired-pulse ratio and miniature excitatory postsynaptic currents indicated a role of presynaptic Ttyh1 from spinal nociceptor terminals in the regulation of neurotransmitter release. Interfering with Ttyh1 specifically in nociceptors produces a comparable pain relief. Thus, in this study we demonstrated that Ttyh1 is a critical determinant of acute nociception and pain sensitization caused by peripheral inflammation.


Assuntos
Nociceptores , Transmissão Sináptica , Animais , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/metabolismo , Dor , Substância Cinzenta Periaquedutal
17.
Mol Psychiatry ; 26(6): 2514-2532, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33303946

RESUMO

Genome-wide association studies uncovered the association of ZNF804A (Zinc-finger protein 804A) with schizophrenia (SZ). In vitro data have indicated that ZNF804A might exert its biological roles by regulating spine and neurite morphogenesis. However, no in vivo data are available for the role of ZNF804A in psychiatric disorders in general, SZ in particular. We generated ZFP804A mutant mice, and they showed deficits in contextual fear and spatial memory. We also observed the sensorimotor gating impairment, as revealed by the prepulse inhibition test, but only in female ZFP804A mutant mice from the age of 6 months. Notably, the PPI difference between the female mutant and control mice was no longer existed with the administration of Clozapine or after the ovariectomy. Hippocampal long-term potentiation was normal in both genders of the mutant mice. Long-term depression was absent in male mutants, but facilitated in the female mutants. Protein levels of hippocampal serotonin-6 receptor and GABAB1 receptor were increased, while those of cortical dopamine 2 receptor were decreased in the female mutants with no obvious changes in the male mutants. Moreover, the spine density was reduced in the cerebral cortex and hippocampus of the mutant mice. Knockdown of ZFP804A impaired the neurite morphogenesis of cortical and hippocampal neurons, while its overexpression enhanced neurite morphogenesis only in the cortical neurons in vitro. Our data collectively support the idea that ZFP804A/ZNF804A plays important roles in the cognitive functions and sensorimotor gating, and its dysfunction may contribute to SZ, particularly in the female patients.


Assuntos
Esquizofrenia , Animais , Medo , Feminino , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Neurônios/metabolismo , Esquizofrenia/genética
18.
Mol Brain ; 13(1): 161, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228784

RESUMO

Previous studies have shown that CCL2 may cause chronic pain, but the exact mechanism of central sensitization is unclear. In this article, we further explore the presynaptic role of CCL2. Behavioral experiments show that intervertebral foramen injection CCR2 antagonists into dorsal root ganglion (DRG) can inhibit the inflammatory pain caused by CCL2 in spinal cord. We raised the question of the role of presynaptic CCR2 in the spinal dorsal horn. Subsequent electron microscopy experiments showed that CCR2 was expressed in the presynaptic CGRP terminal in the spinal dorsal horn. CCL2 can enhance presynaptic calcium signal. Whole-cell patch-clamp recordings showed that CCL2 can enhance NMDAR-eEPSCs through presynaptic effects, and further application of glutamate sensor method proved that CCL2 can act on presynaptic CCR2 to increase the release of presynaptic glutamate. In conclusion, we suggest that CCL2 can directly act on the CCR2 on presynaptic terminals of sensory neurons in the spinal dorsal horn, leading to an increase in the release of presynaptic glutamate and participate in the formation of central sensitization.


Assuntos
Quimiocina CCL2/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Terminações Pré-Sinápticas/metabolismo , Receptores CCR2/metabolismo , Medula Espinal/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Benzoxazinas/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ácido Glutâmico/metabolismo , Hiperalgesia/complicações , Inflamação/patologia , Injeções Espinhais , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/complicações , Terminações Pré-Sinápticas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/ultraestrutura , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/ultraestrutura , Compostos de Espiro/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Radiat Oncol ; 15(1): 249, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121507

RESUMO

PURPOSE: To develop and validate a nomogram model to predict complete response (CR) after concurrent chemoradiotherapy (CCRT) in esophageal squamous cell carcinoma (ESCC) patients using pretreatment CT radiomic features. METHODS: Data of patients diagnosed as ESCC and treated with CCRT in Shantou Central Hospital during the period from January 2013 to December 2015 were retrospectively collected. Eligible patients were included in this study and randomize divided into a training set and a validation set after successive screening. The least absolute shrinkage and selection operator (LASSO) with logistic regression to select radiomics features calculating Rad-score in the training set. The logistic regression analysis was performed to identify the predictive clinical factors for developing a nomogram model. The area under the receiver operating characteristic curves (AUC) was used to assess the performance of the predictive nomogram model and decision curve was used to analyze the impact of the nomogram model on clinical treatment decisions. RESULTS: A total of 226 patients were included and randomly divided into two groups, 160 patients in training set and 66 patients in validation set. After LASSO analysis, seven radiomics features were screened out to develop a radiomics signature Rad-score. The AUC of Rad-score was 0.812 (95% CI 0.742-0.869, p < 0.001) in the training set and 0.744 (95% CI 0.632-0.851, p = 0.003) in the validation set. Multivariate analysis showed that Rad-score and clinical staging were independent predictors of CR status, with p values of 0.035 and 0.023, respectively. A nomogram model incorporating Rad-socre and clinical staging was developed and validated, with an AUC of 0.844 (95% CI 0.779-0.897) in the training set and 0.807 (95% CI 0.691-0.894) in the validation set. Delong test showed that the nomogram model was significantly superior to the clinical staging, with p < 0.001 in the training set and p = 0.026 in the validation set. The decision curve showed that the nomogram model was superior to the clinical staging when the risk threshold was greater than 25%. CONCLUSION: We developed and validated a nomogram model for predicting CR status of ESCC patients after CCRT. The nomogram model was combined radiomics signature Rad-score and clinical staging. This model provided us with an economical and simple method for evaluating the response of chemoradiotherapy for patients with ESCC.


Assuntos
Quimiorradioterapia , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/terapia , Nomogramas , Idoso , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Tomografia Computadorizada por Raios X
20.
J Neuroinflammation ; 17(1): 295, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036632

RESUMO

BACKGROUND: Spinal cord injury (SCI) favors a persistent pro-inflammatory macrophages/microglia-mediated response with only a transient appearance of anti-inflammatory phenotype of immune cells. However, the mechanisms controlling this special sterile inflammation after SCI are still not fully elucidated. It is known that damage-associated molecular patterns (DAMPs) released from necrotic cells after injury can trigger severe inflammation. High mobility group box 1(HMGB1), a ubiquitously expressed DNA binding protein, is an identified DAMP, and our previous study demonstrated that reactive astrocytes could undergo necroptosis and release HMGB1 after SCI in mice. The present study aimed to explore the effects and the possible mechanism of HMGB1on macrophages/microglia polarization, as well as the neuroprotective effects by HMGB1 inhibition after SCI. METHODS: In this study, the expression and the concentration of HMGB1 was determined by qRT-PCR, ELISA, and immunohistochemistry. Glycyrrhizin was applied to inhibit HMGB1, while FPS-ZM1 to suppress receptor for advanced glycation end products (RAGE). The polarization of macrophages/microglia in vitro and in vivo was detected by qRT-PCR, immunostaining, and western blot. The lesion area was detected by GFAP staining, while neuronal survival was examined by Nissl staining. Luxol fast blue (LFB) staining, DAB staining, and western blot were adopted to evaluate the myelin loss. Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay was applied to evaluate locomotor functional recovery. RESULTS: Our data showed that HMGB1 can be elevated and released from necroptotic astrocytes and HMGB1 could induce pro-inflammatory microglia through the RAGE-nuclear factor-kappa B (NF-κB) pathway. We further demonstrated that inhibiting HMGB1 or RAGE effectively decreased the numbers of detrimental pro-inflammatory macrophages/microglia while increased anti-inflammatory cells after SCI. Furthermore, our data showed that inhibiting HMGB1 or RAGE significantly decreased neuronal loss and demyelination, and improved functional recovery after SCI. CONCLUSIONS: The data implicated that HMGB1-RAGE axis contributed to the dominant pro-inflammatory macrophages/microglia-mediated pro-inflammatory response, and inhibiting this pathway afforded neuroprotection for SCI. Thus, therapies designed to modulate immune microenvironment based on this cascade might be a prospective treatment for SCI.


Assuntos
Proteína HMGB1/biossíntese , Macrófagos/metabolismo , Microglia/metabolismo , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/prevenção & controle , Animais , Polaridade Celular/fisiologia , Células Cultivadas , Proteína HMGB1/antagonistas & inibidores , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Neuroproteção/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Vértebras Torácicas/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...