Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dig Dis ; 24(12): 640-647, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059890

RESUMO

Pyroptosis is an inflammasome-dependent form of programmed cell death that is mediated by caspases-1, -4, -5, and -11, and the gasdermin protein family. It is characterized by the rupture of cell membrane and the subsequent release of cell contents and interleukins, leading to inflammatory reaction and activation of the immune system. Recent studies have suggested that pyroptosis plays a role in the development of gastrointestinal tumors, impeding tumor generation and progression as well as providing a favorable microenvironment for tumor growth. In this review we outlined the current knowledge regarding the implications of pyroptosis in gastrointestinal cancers.


Assuntos
Neoplasias , Piroptose , Humanos , Caspases/metabolismo , Proteínas de Neoplasias/metabolismo , Trato Gastrointestinal , Microambiente Tumoral
2.
J Nanosci Nanotechnol ; 14(7): 5047-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24757979

RESUMO

A novel Fe3O4@ZnS nanomaterial with fluorescent and superparamagnetic properties has been successfully fabricated via TOPO-TOP synthesis with an additional coordinating component (OAm). The adsorption of OAm on the preformed magnetite nanoparticles, which were prepared in phenyl ether with oleic acid and oleyl amine, played an essential role in directing the structure of the Fe3O4@ZnS composites. The obtained materials were characterized by FTIR, TEM, XRD, X-ray photoelectron spectroscopy (XPS), UV-vis, fluorescence spectrophotometer and VSM. The results indicated that the Fe3O4 nanoparticles were successfully combined with ZnS and the coating of ZnS can be controlled by adjusting the molar ratio of Fe3O4 to ZnS. The saturation magnetization values of Fe3O4, Fe3O4@ZnS (1:2) and Fe3O4@ZnS (1:5) nanoparticles are 57.0 emu g(-1), 44.4 emu g(-1) and 34.2 emu g(-1), respectively at 300 K and the nanocomposites exhibit better fluorescence without evident quenching. The combined magnetic and fluorescent properties endow the nanocomposites with great potential applications in "nano-conveyer-belt" platform technology for drug targeting, bioseparation, diagnostic analysis and so on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...