Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(64): 8435-8438, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39036930

RESUMO

Introducing a methyl group into 1,3-dioxolane (DOL) to obtain a stable cyclic ether, 4-methyl-1,3-dioxolane (4-Me DOL), allows it to be used as an additive in LiPF6-based carbonate electrolytes. The addition of 4-Me DOL can form a stable SEI with good Li+ transport ability, which can simultaneously improve the rate capability and cycling performance of lithium metal batteries.

2.
Cell Metab ; 36(4): 839-856.e8, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38367623

RESUMO

Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.


Assuntos
Coração , Lisofosfolipídeos , Esfingolipídeos , Esfingosina/análogos & derivados , Animais , Esfingolipídeos/metabolismo , Isoenzimas , Mamíferos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA