Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 36(4): 839-856.e8, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38367623

RESUMO

Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.


Assuntos
Coração , Lisofosfolipídeos , Esfingolipídeos , Esfingosina/análogos & derivados , Animais , Esfingolipídeos/metabolismo , Isoenzimas , Mamíferos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
2.
Mol Neurobiol ; 61(4): 1936-1952, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37819429

RESUMO

The blood-brain barrier (BBB) and tight junction (TJ) proteins maintain the homeostasis of the central nervous system (CNS). The dysfunction of BBB allows peripheral T cells infiltration into CNS and contributes to the pathophysiology of multiple sclerosis (MS). Teriflunomide is an approved drug for the treatment of MS by suppressing lymphocytes proliferation. However, whether teriflunomide has a protective effect on BBB in MS is not understood. We found that teriflunomide restored the injured BBB in the EAE model. Furthermore, teriflunomide treatment over 6 months improved BBB permeability and reduced peripheral leakage of CNS proteins in MS patients. Teriflunomide increased human brain microvascular endothelial cell (HBMEC) viability and promoted BBB integrity in an in vitro cell model. The TJ protein claudin-1 was upregulated by teriflunomide and responsible for the protective effect on BBB. Furthermore, RNA sequencing revealed that the Wnt signaling pathway was affected by teriflunomide. The activation of Wnt signaling pathway increased claudin-1 expression and reduced BBB damage in cell model and EAE rats. Our study demonstrated that teriflunomide upregulated the expression of the tight junction protein claudin-1 in endothelial cells and promoted the integrity of BBB through Wnt signaling pathway.


Assuntos
Barreira Hematoencefálica , Crotonatos , Hidroxibutiratos , Esclerose Múltipla , Nitrilas , Toluidinas , Humanos , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Esclerose Múltipla/metabolismo , Claudina-1/metabolismo , Via de Sinalização Wnt/fisiologia , Células Endoteliais/metabolismo , Claudinas/metabolismo , Claudina-5/metabolismo , Junções Íntimas/metabolismo
3.
Molecules ; 28(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005265

RESUMO

ß-carotene is known to have pharmacological effects such as anti-inflammatory, antioxidant, and anti-tumor properties. However, its main mechanism and related signaling pathways in the treatment of inflammation are still unclear. In this study, component target prediction was performed by using literature retrieval and the SwissTargetPrediction database. Disease targets were collected from various databases, including DisGeNET, OMIM, Drug Bank, and GeneCards. A protein-protein interaction (PPI) network was constructed, and enrichment analysis of gene ontology and biological pathways was carried out for important targets. The analysis showed that there were 191 unique targets of ß-carotene after removing repeat sites. A total of 2067 targets from the three databases were integrated, 58 duplicate targets were removed, and 2009 potential disease action targets were obtained. Biological function enrichment analysis revealed 284 biological process (BP) entries, 31 cellular component (CC) entries, 55 molecular function (MF) entries, and 84 cellular pathways. The biological processes were mostly associated with various pathways and their regulation, whereas the cell components were mainly membrane components. The main molecular functions included RNA polymerase II transcription factor activity, DNA binding specific to the ligand activation sequence, DNA binding, steroid binding sequence-specific DNA binding, enzyme binding, and steroid hormone receptors. The pathways involved in the process included the TNF signaling pathway, sphingomyelin signaling pathway, and some disease pathways. Lastly, the anti-inflammatory signaling pathway of ß-carotene was systematically analyzed using network pharmacology, while the molecular mechanism of ß-carotene was further explored by molecular docking. In this study, the anti-inflammatory mechanism of ß-carotene was preliminarily explored and predicted by bioinformatics methods, and further experiments will be designed to verify and confirm the predicted results, in order to finally reveal the anti-inflammatory mechanism of ß-carotene.


Assuntos
Medicamentos de Ervas Chinesas , beta Caroteno , Farmacologia em Rede , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Esteroides , DNA
4.
Adv Sci (Weinh) ; 10(20): e2300738, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37170724

RESUMO

Inflammation induced by autoreactive CD4+ T lymphocytes is a major factor in the pathogenesis of multiple sclerosis (MS). Immunosuppressive drugs, such as FTY720, are subsequently developed to prevent the migration of CD4+ T lymphocytes to the central nervous system (CNS). However, these immunosuppressive drugs have limited accumulation in lymph nodes (LNs), resulting in poor efficacy. Here, this work develops a nanoplatform for delivering immunosuppressive drugs to LNs for durable MS treatment. Human CD47 peptide and L-selectin targeting aptamer are modified on the nanoparticles encapsulated with FTY720 (clnFTY) for self-passivation and the targeting of L-selectin on lymphocytes, a homing receptor for T-cells entering LNs. Using this natural process, clnFTY nanoparticles efficiently deliver FTY720 to LNs and delay disease progression in experimental autoimmune encephalomyelitis (EAE) mice following a single dose treatment over a 42-day observational period. Considering the daily dosing requirement of FTY720, this strategy greatly improves its therapeutic efficiency. The ability of clnFTY nanoparticles to target lymphocytes, reduce sphingosine-1-phosphate receptor 1 (S1PR1) expression, and suppress inflammatory cytokines release are demonstrated in clinical blood samples from MS patients. Taken together, this study demonstrates that targeted LNs delivery may greatly extend the treatment cycle of immunosuppressive drugs for durable MS treatment.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Humanos , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/uso terapêutico , Selectina L , Linfonodos , Linfócitos , Esclerose Múltipla/tratamento farmacológico , Preparações Farmacêuticas , Esfingosina/metabolismo
5.
Front Plant Sci ; 14: 1144326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056511

RESUMO

Natural antioxidants are more attractive than synthetic chemical oxidants because of their non-toxic and non-harmful properties. Microalgal bioactive components such as carotenoids, polysaccharides, and phenolic compounds are gaining popularity as very effective and long-lasting natural antioxidants. Few articles currently exist that analyze microalgae from a bibliometric and visualization point of view. This study used a bibliometric method based on the Web of Science Core Collection database to analyze antioxidant research on bioactive compounds in microalgae from 1996 to 2022. According to cluster analysis, the most studied areas are the effectiveness, the antioxidant mechanism, and use of bioactive substances in microalgae, such as carotene, astaxanthin, and tocopherols, in the fields of food, cosmetics, and medicine. Using keyword co-occurrence and keyword mutation analysis, future trends are predicted to improve extraction rates and stability by altering the environment of microalgae cultures or mixing extracts with chemicals such as nanoparticles for commercial and industrial applications. These findings can help researchers identify trends and resources to build impactful investigations and expand scientific frontiers.

6.
Gut Pathog ; 15(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593526

RESUMO

BACKGROUND: Necrotic enteritis (NE) is an infectious intestinal disease caused by Clostridium perfringens (C. perfringens) that is now re-emerging and causing concern within the poultry industry. Previously, the supplementation of antibiotics in feed was the most popular control strategy against C. perfringens. However, with the ban on supplementing growth-promoting antibiotics in livestock feed, alternatives to antibiotics will be essential in order to control necrotic enteritis. A possible alternative to antibiotics could be the medium or long chain fatty acids (MCFA or LCFA) as these are able to destroy cell membranes which in turn results in the death of bacteria. In this study, the in vitro antimicrobial activity of different combinations with microencapsulated caprylic acid (C8: 0), capric acid (C10: 0), lauric acid (C12: 0) and myristic acid (C14: 0) against C. perfringens and in vivo control the NE-inducing C. perfringens in broiler chicken were analyzed. RESULTS: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assay results revealed that three different combinations of medium/long chain fatty acids varied in antimicrobial activities against C. perfringens type A strain (CVCC52, quality control), C. perfringens type A strain (C8-1), C. perfringens type G strain (D25) and C. perfringens type G strain (MZ1). Specifically, combination of C12: 0 and C14: 0 (C12-14) showed the highest antimicrobial activity against the four strains of C. perfringens (MIC ≤ 12.5 µg/mL, MBC = 50 µg/mL), followed by the combination of C10: 0 and C12: 0 (C10-12) (MIC, MBC ≤ 50 µg/mL). The in vivo study, 189 of 818-crossbred chickens that were fed a wheat-based diet and randomly divided into nine groups, with six treatment groups supplemented with either a high dose (1 g/kg) or low dose (0.5 g/kg) of three combinations respectively. The remaining three groups comsisted of a positive group supplement with avilamycin (0.01 g/kg), an infected control and an uninfected control. All chickens were challenged with C. perfringens from day 14 to day 17, except those in the uninfected control group. On day 20, the duodenum and jejunum necrotic lesions scores were calculated and the results showed that there was significant decrease in the C12-C14 high dose group (1.43 ± 0.23, 0.48 ± 0.13) and the C10-12 high dose group (1.52 ± 0.19, 0.48 ± 0.11) compared to the infected group (2.86 ± 0.21, 1.20 ± 0.28). CONCLUSIONS: This finding indicated that dietary microencapsulated C12-C14 and C10-C12 could inhibit the growth of C. perfringens in chickens, which proves is viability to serve as an alternative to antibiotics used for necrotic enteritis caused by C. perfringens.

7.
Foods ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36496744

RESUMO

The proposed non-conventional induction heating, which combines an MSCP and VDC structure, was proved to have excellent thermal effect. Different from other electric field sterilization, this electrotechnology operates with no electrodes, and it is a continuous-flow process with short-duration (about 20 s). In current study, the parameters related to temperature rise were investigated, including applied voltage, frequency, the diameter of the secondary coil and heating tube, as well as their length, etc. It was demonstrated that a smaller diameter of the heating tube, parallel connection sample coils, and higher frequency were beneficial for the inactivation of microorganisms. At 500 Hz, the optimal condition is 800 V, d1 = 2 mm, and L1 = 10 cm. Notably, the system could inactivate all microorganisms and maintained the physicochemical properties of apple juice at 40 kHz. It suggests that this structural design has the potential for industrial applications and the proposed induction heating can realize the rapid sterilization of liquid food without applying electrodes.

8.
Front Bioeng Biotechnol ; 10: 978212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185434

RESUMO

In the biomedical field, polyurethane (PU) is widely used in interventional catheters, artificial hearts, artificial blood vessels, orthopedic materials, medical adhesives, and other medical devices. In this paper, a method based on machine vision was proposed to control the drafting and winding accuracy of PU filament in order to solve the problem of centrifugal runout when the mold rotates. The centrifugal runout of the mold directly affected the preparation efficiency and quality of long artificial blood vessel by wet spinning. Through non-contact real-time detection of the filament diameter and the angle between the axis of filament and the axis of mold, the motion parameters of the two motors driving the moving platform and the drafting roller could be adjusted in real time to achieve the purpose of online real-time control of filament drafting and winding accuracy. The vision control method proposed in this paper was used to carry out the PU tube preparation experiment. The visual measurement results of the filament diameter and the included angle were compared with the manual measurement results. The average value of the diameter error is 0.0096mm, and the average value of winding angle is 0.4777°. The results proved the accuracy of the visual measuring method and testified it feasible to using machine vision instead of manual method to detect filament diameter and winding angle. Properties of the prepared PU tube were tested and analyzed. The filament diameter measured by the 3D microscope was about 0.87 mm and significantly smaller than the filament diameter before winding. This indicated that the winding was uniform, the extrusion was tight, and the adhesion was good.

9.
Poult Sci ; 101(11): 102087, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095866

RESUMO

This experiment was conducted to investigate the antibacterial effects of essential oils (EO) in vitro and the influence of EO on growth performance, intestinal morphology and oxidation resistance and cecal microflora of yellow-feathered broilers. A total of 720 one-day-old male yellow feather broilers were randomly assigned into 4 treatments with 6 replicate cages of 30 broilers each. The groups were as follows: CON group (basal diet), EO200 group (basal diet + 200 mg/kg EO), EO400 group (basal diet + 400 mg/kg EO), and EO600 group (basal diet + 600 mg/kg EO). The experiment lasted for 48 d. Results showed that the growth and biofilm formation of avian pathogenic E. coli O78 and Salmonella pullorum were limited by adding EO to the diet (P < 0.05). Besides, birds fed with EO had greater (P < 0.05) average daily feed intake (ADFI), average daily gain (ADG), and body weight (BW) during d 1 to 21, 22 to 42, and 1 to 48 and lower (P < 0.05) feed: gain (F:G) than those fed with basal diet during d 22 to 42 and 1 to 48. Moreover, the activity of antioxidant enzyme and the intestinal permeability were improved in the EO400 and EO600 groups rather than the CON group on d 21 (P < 0.05). There were significant differences in cecal microbial composition and enrichment of metabolic pathways of birds among all groups by 16S-based sequencing. In summary, some dose of EO improved bacteriostatic ability, antioxidant ability, and intestinal health of broilers which contributed to the growth performance improvement of yellow-feathered broilers, which can be a promising antibiotic alternative for improving poultry production.


Assuntos
Gorduras Insaturadas na Dieta , Microbioma Gastrointestinal , Óleos Voláteis , Masculino , Animais , Galinhas , Antioxidantes/metabolismo , Ração Animal/análise , Gorduras Insaturadas na Dieta/metabolismo , Escherichia coli/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Permeabilidade , Proliferação de Células
10.
Front Bioeng Biotechnol ; 10: 944944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992353

RESUMO

In the process of developing the industrial control SAMA logic diagram commonly used in the industrial process control system, there are some problems, that is, the size of logic diagram elements is small, the shape is various, similar element recognition is easily confused, and the detection accuracy is low. In this study, the faster R-CNN network has been improved. The original VGG16 network has been replaced by the ResNet101 network, and the residual value module was introduced to ensure the detailed features of the deep network. Then the industrial control logic diagram dataset was analyzed to improve the anchor size ratio through the K-means clustering algorithm. The candidate box screening problem was optimized by improving the non-maximum suppression algorithm. The elements were distinguished via the combination of the candidate box location and the inherent text, which improved the recognition accuracy of similar elements. An experimental platform was built using the TensorFlow framework based on the Windows system, and the improved method was compared with the original one by the control variable. The results showed that the performance of similar element recognition has been greatly enhanced through an improved faster R-CNN network.

11.
Foods ; 11(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053945

RESUMO

As an emerging electrotechnology, induced electric field has attracted extensive attention in the development of innovative heat treatment equipment. In this study, a resistance heating unit based on induced electric field was built for inner heating of aqueous electrolyte solutions as well as liquid foods, such as vinegar. NaCl solutions and liquid foods with different conductivity were used to investigate the thermal effect and temperature rise of samples. Saline gel composed of 3% agar powder and 20% NaCl acted as a coil of conductor for inducing high-level output voltage. The utilization of the saline gel coil significantly improved the power conversion efficiency of the heating unit as well as the heating rate. The results revealed that duty cycle and applied frequency had immediate impact on the efficiency of inner heating. Additionally, the rate of temperature rise was proportional to the conductivity of the sample. The temperature of 200 mL NaCl solution (0.6%) increased from 25 °C to 100 °C in 3 min at 40% duty cycle and 60 kHz of applied frequency, and it was a circulating-flow process. The maximum temperature rise of black vinegar was 39.6 °C in 15 s at 60 kHz and 60% duty cycle, while that of white vinegar was 32.2 °C in 30 s under same conditions, whereas it was a continuous-flow process. This novel heating system has realized the inner heating of liquid samples.

12.
Food Microbiol ; 102: 103928, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809954

RESUMO

Non-conventional heating technology based on electric fields can be utilized to process liquid foods. In this study, the induced electric field (IEF) was investigated to clarify its inactivation mechanism on E.coli. Staining results show that inactivation of E.coli by IEF can be attributed to the reversible destruction of the cell membrane, followed by the denaturation of intracellular enzymes, and finally the irreversible rupture of the cell membrane. The increased levels of extracellular proteins and nucleic acids were also observed. IEF treatment at 400 Hz and 800 V (or 53 V/cm) results in a reduction of 4.5 log CFU·mL-1 in the number of E.coli. Storage life analysis shows that IEF treatment can improve the stability of apple juice and the content of bioactive components. Thus, IEF is a potential technique for liquid food processing.


Assuntos
Eletricidade , Escherichia coli O157 , Manipulação de Alimentos/métodos , Malus , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Sucos de Frutas e Vegetais , Malus/microbiologia
13.
J Colloid Interface Sci ; 608(Pt 3): 2730-2739, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34799046

RESUMO

Constructing highly efficient and cost-effective photocatalyst system has been a big challenge for photocatalysis. Herein, CdS nanosphere (N-CdS), hollow CdS (H-CdS) and a series of H-CdS@NiCoP core-shell nanospheres have been successfully prepared via a facile hydrothermal method. The activity test showed that H-CdS exhibited higher photocatalytic activity (3.34 mmol g-1h-1) compared with N-CdS (0.99 mmol g-1h-1) under visible light irradiation (λ ≥ 420 nm), suggesting that hollow structure could effectively improve photocatalytic activity. Moreover, the H-CdS@NiCoP-7 wt% displayed a maximum photocatalytic H2 evolution rate of 13.47 mmol g-1h-1, which was about 4 times and 2.5 times higher than that of pristine H-CdS and H-CdS@Pt-3 wt%, respectively. Furthermore, H-CdS@NiCoP-7 wt% exhibited a good stability during 20 h test. The physicochemical properties were characterized by XRD, SEM, TEM, XPS, UV-vis DRS, PL and photoelectrochemical technique. The results showed that NiCoP addition can construct p-n junction with H-CdS and effectively promote the charge transfer from CdS to NiCoP, which improved the photocatalytic hydrogen evolution activity. This work revealed that NiCoP could react as an excellent co-catalyst for enhancing H-CdS photocatalytic activity.


Assuntos
Compostos de Cádmio , Nanosferas , Catálise , Hidrogênio , Luz
14.
Chemistry ; 27(40): 10356-10368, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-33988891

RESUMO

A series of catalysts with different core-shell structures has been successfully prepared by a hydrothermal method. They consisted of CeCoOx @TiO2 (single shell), CeCoOx @Nb2 O5 (single shell) and CeCoOx @Nb2 O5 @TiO2 (double shell) core-shell nanocages and CeCoOx nanocages, in which CeCoOx was the core and TiO2 and Nb2 O5 were shells. The influence of the core-shell structure on the catalytic performance of o-dichlorobenzene was investigated by activity, water-resistance, and thermal stability tests as well as catalyst characterization. The temperatures corresponding to 90 % conversion of o-dichlorobenzene (T90 ) of CeCoOx , CeCoOx @TiO2 , CeCoOx @Nb2 O5 , and CeCoOx @Nb2 O5 @TiO2 catalysts were 415, 383, 362 and 367 °C, respectively. CeCoOx @Nb2 O5 exhibited excellent catalytic activity, mainly owing to the special core-shell structure, large specific surface area, abundant activity of Co3+ , Ce3+ , Nb5+ , strong reducibility, and more active oxygen vacancies. It can be seen that the Nb2 O5 coating can greatly improve the catalytic activity of the catalyst. In addition, due to the protective effect of the TiO2 shell on CeCoOx , CeCoOx @Nb2 O5 @TiO2 catalysts exhibited outstanding thermal and hydrothermal stability for 20 hours. The T90 of CeCoOx @Nb2 O5 @TiO2 was slightly lower than that of CeCoOx @Nb2 O5 , but it had higher stability and hydrothermal stability. Furthermore, possible reaction pathways involving the Mars-van-Krevelen (MvK) and Langmuir-Hinshelwood (L-H) models were deduced based on studies of the temperature-programmed desorption of O2 (O2 -TPD), X-ray photoelectron spectroscopy (XPS), and in situ diffuse reflectance FTIR spectroscopy (DRIFTS) characterization.

15.
Nanotechnology ; 32(18): 185704, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33494074

RESUMO

Nanostructured dielectric composite has been considered as a promising manner in improving the flashover performance of oil-paper which has been widely used in power systems. In this paper, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit SiO2 on the ceramic fiber-reinforced insulating paper. Scanning electron microscope images show a large number of SiO2 nanoparticles with diameters of 100 nm-250 nm uniformly attached to the fiber surface after the plasma deposition. The surface flashover voltage of the insulating paper was tested in the air and the transformer oil, respectively. Results show that the corresponding DC surface flashover voltages increased by 15.1% in the air and breakdown between liquid and solid interface increased by 24.6% after the PECVD. It is believed that nanoparticles constructed in ceramic fibers change the electron injection barrier which inhibits the injection of negative charges and hinders the accumulation of charges in the dielectric. Nanoparticles can capture electric charges formed in the transformer oil which affects the generation and development of streamers, resulting in an increased dielectric strength. This study provides a new method to comprehensively improve the surface insulating property which has the prospect of promoting other dielectric materials.

16.
ACS Appl Mater Interfaces ; 13(2): 2610-2621, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33412849

RESUMO

In this paper, a simple method to enhance the H2O resistance of Ru/TiCeOx catalysts for o-DCB catalytic combustion by constructing superhydrophobic coating of phenyltriethoxysilane (PhTES) was proposed. The effect of PhTES content on the pore structure, specific surface area, H2O resistance, contact angle (CA) value, and catalytic activity of the catalyst was studied. When water was added, the pristine Ru/TiCeOx catalytic activity decreased by about 26%, while the Ru/TiCeOx-16Ph activity hardly decreased. According to the analysis results of XRD, FT-IR, SEM, and CA, PhTES was closely coated on the surface of Ru/TiCeOx to produce a more hydrophobic surface. The Ru/TiCeOx-16Ph catalyst had strong hydrophobicity, and the contact angle was 159.8°, which not only significantly enhanced the water resistance and self-cleaning activity but also showed a good elimination temperature (T90 = 341 °C) for the o-DCB. The enhanced water resistance of Ru/TiCeOx-XPh catalysts resulted from the reduction of the active centers consumed (water occupying oxygen vacancy sites). The reaction mechanism of the Ru/TiCeOx-16Ph catalyst based on surface oxygen species and the Deacon reaction was proposed. This method provided new idea for the design of a new water-resistant composite catalyst and promoted the practical application of the composite catalyst in the catalytic oxidation of o-DCB.

17.
Food Chem ; 325: 126943, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32416573

RESUMO

The non-conventional technologies about continuous sterilization of liquid food were focused on recently, which is benefits for industrialization. In this study, the machine with an induced electric field was used to sterilize S. cerevisiae in apple juice and the juice quality also was researched. The optimal condition is 800 V, 400 Hz, 5 rpm and 2 mm. Furthermore, the sterilization of the IEF was attributed to non-thermal and thermal effects. The IEF treatment group has a reduction of about 4.6 logs (CFU/mL) in S. cerevisiae at 400 Hz, 800 V, and 2 mm, while the non-thermal group is nearly 2 logs (CFU/mL). The improvement of conductivity and the reduction of pH value imply that IEF might destroy the cell structure. Meanwhile, polyphenol compounds and amino acids in the IEF group were protected well than other groups. Generally, IEF is a potential technology for industrial sterilization of liquid beverages.

18.
Small ; 15(28): e1901272, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31165571

RESUMO

Nanoscale surface-engineering plays an important role in improving the performance of battery electrodes. Nb2 O5 is one typical model anode material with promising high-rate lithium storage. However, its modest reaction kinetics and low electrical conductivity obstruct the efficient storage of larger ions of sodium or potassium. In this work, partially surface-amorphized and defect-rich black niobium oxide@graphene (black Nb2 O5- x @rGO) nanosheets are designed to overcome the above Na/K storage problems. The black Nb2 O5- x @rGO nanosheets electrodes deliver a high-rate Na and K storage capacity (123 and 73 mAh g-1 , respectively at 3 A g-1 ) with long-term cycling stability. Besides, both Na-ion and K-ion full batteries based on black Nb2 O5- x @rGO nanosheets anodes and vanadate-based cathodes (Na0.33 V2 O5 and K0.5 V2 O5 for Na-ion and K-ion full batteries, respectively) demonstrate promising rate and cycling performance. Notably, the K-ion full battery delivers higher energy and power densities (172 Wh Kg-1 and 430 W Kg-1 ), comparable to those reported in state-of-the-art K-ion full batteries, accompanying with a capacity retention of ≈81.3% over 270 cycles. This result on Na-/K-ion batteries may pave the way to next-generation post-lithium batteries.

19.
Food Chem ; 270: 538-545, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30174084

RESUMO

An electroanalytical method was proposed to determine fat content in ultrahigh-temperature (UHT) processed milk by magnetoelectric induction. In the technique, involves the induction of a controllable voltage (potential difference, Ubc) in UHT milk, with differential magnetic fluxes as the stimulus. Results indicated that Ubc increased with an increase in the ratio difference between primary coil 1 and primary coil 2. Variation of fat content in the UHT milk induced a change in Ubc. A reduction in fat content led to an increase in λ-value (ratio of Uab to excitation voltage) under specific conditions. For calibration and verification, a high linear correlation coefficient (R2 = 0.9428) and a low root-mean-square error of cross-validation (0.342 g/100 g) were observed between milk fat and λ-value at 20 V and 700 Hz under an open circuit at a coil ratio of 14:56. Measurement sensitivity was improved with the increase of the sample coils.


Assuntos
Gorduras na Dieta/análise , Temperatura Alta , Leite/química , Animais , Calibragem
20.
Appl Bionics Biomech ; 2018: 2648502, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849755

RESUMO

Inspired by the dynamic gait adopted by gecko, we had put forward GPL (Gecko-inspired mechanism with a Pendular waist and Linear legs) model with one passive waist and four active linear legs. To further develop dynamic gait and reduce energy consumption of climbing robot based on the GPL model, the gait design and trajectory planning are addressed in this paper. According to kinematics and dynamics of GPL, the trot gait and continuity analysis are executed. The effects of structural parameters on the supporting forces are analyzed. Moreover, the trajectory of the waist is optimized based on system energy consumption. Finally, a bioinspired robot is developed and the prototype experiment results show that the larger body length ratio, a certain elasticity of the waist joint, and the optimized trajectory contribute to a decrease in the supporting forces and reduction in system energy consumption, especially negative forces on supporting feet. Further, the results in our experiments partly explain the reasonability of quadruped reptile's kinesiology during dynamic gait.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...