Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(6): 103618, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38564835

RESUMO

The decline in albumen quality resulting from aging hens poses a threat to the financial benefits of the egg industry. Exploring the underlying mechanisms from the perspective of cell molecules of albumen formation is significant for the efficient regulation of albumen quality. Two individual groups of Hy-Line Brown layers with ages of 40 (W40) and 100 (W100) wk old were used in the present study. Each group contained over 2,000 birds. This study assessed the egg quality, biochemical indicators and physiological status of hens between W40 and W100. Subsequently, a quantitative proteomic analysis was conducted to identify differences in protein abundance in magnum tissues between W40 and W100. In the W40 group, significant increases (P < 0.05) were notable for albumen quality (thick albumen solid content, albumen height, Haugh unit), serum indices (calcium, estrogen, and progesterone levels), magnum histomorphology (myosin light-chain kinase content, secretory capacity, mucosal fold, goblet cell count and proportion) as well as the total antioxidant capacity of the liver. However, the luminal diameter of the magnum, albumen gel properties and random coil of the albumen were increased (P < 0.05) in the W100 group. The activity of glutathione, superoxidase dismutase, and malondialdehyde in the liver, magnum, and serum did not vary (P > 0.05) among the groups. Proteomic analysis revealed the identification of 118 differentially expressed proteins between the groups, which comprised proteins associated with protein secretion, DNA damage and repair, cell proliferation, growth, antioxidants, and apoptosis. Furthermore, Kyoto Encyclopedia of Genes pathway analysis revealed that BRCA2 and FBN1 were significantly downregulated in Fanconi anemia (FA) and TGF-ß signaling pathways in W100, validated through quantitative real-time PCR (qRT-PCR). In conclusion, significant age-related variations in albumen quality, and magnum morphology are regulated by proteins involved in antioxidant capacity.

2.
J Anim Sci Biotechnol ; 15(1): 37, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439110

RESUMO

BACKGROUND: Deteriorations in eggshell and bone quality are major challenges in aged laying hens. This study compared the differences of eggshell quality, bone parameters and their correlations as well as uterine physiological characteristics and the bone remodeling processes of hens laying eggs of different eggshell breaking strength to explore the mechanism of eggshell and bone quality reduction and their interaction. A total of 240 74-week-old Hy-line Brown laying hens were selected and allocated to a high (HBS, 44.83 ± 1.31 N) or low (LBS, 24.43 ± 0.57 N) eggshell breaking strength group. RESULTS: A decreased thickness, weight and weight ratio of eggshells were observed in the LBS, accompanied with ultrastructural deterioration and total Ca reduction. Bone quality was negatively correlated with eggshell quality, marked with enhanced structures and increased components in the LBS. In the LBS, the mammillary knobs and effective layer grew slowly. At the initiation stage of eggshell calcification, a total of 130 differentially expressed genes (DEGs, 122 upregulated and 8 downregulated) were identified in the uterus of hens in the LBS relative to those in the HBS. These DEGs were relevant to apoptosis due to the cellular Ca overload. Higher values of p62 protein level, caspase-8 activity, Bax protein expression and lower values of Bcl protein expression and Bcl/Bax ratio were seen in the LBS. TUNEL assay and hematoxylin-eosin staining showed a significant increase in TUNEL-positive cells and tissue damages in the uterus of the LBS. Although few DEGs were identified at the growth stage, similar uterine tissue damages were also observed in the LBS. The expressions of runt-related transcription factor 2 and osteocalcin were upregulated in humeri of the LBS. Enlarged diameter and more structural damages of endocortical bones and decreased ash were observed in femurs of the HBS. CONCLUSION: The lower eggshell breaking strength may be attributed to a declined Ca transport due to uterine tissue damages, which could affect eggshell calcification and lead to a weak ultrastructure. Impaired uterine Ca transport may result in reduced femoral bone resorption and increased humeral bone formation to maintain a higher mineral and bone quality in the LBS.

3.
Animals (Basel) ; 14(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539976

RESUMO

This study aimed to investigate whether a dietary 25-OHD3 addition improved the performance, egg quality, blood indexes, antioxidant status, jejunal morphology, and tibia quality of aged laying hens compared to a dietary VD3 addition. A total of 270 Hy-Line Brown laying hens at 55 wk of age were randomly assigned to three dietary treatments with six replicates (15 birds per replicate with 3 birds per cage). Chickens were fed a corn-soybean meal diet supplementation of 4000 IU/kg VD3 (control group), 50 µg/kg 25-OHD3 and 2000 IU/kg VD3 (experimental group 1), or 50 µg/kg 25-OHD3 and 4000 IU/kg VD3 (experimental group 2) for 12 weeks. The results demonstrated that 25-OHD3 caused a significant increase in the laying rate, especially in the 50 µg/kg 25-OHD3 + 2000 IU/kg VD3 group; the laying rate reached the maximum compared with other groups after 12 weeks (p < 0.05). However, there were no significant effects on the average egg weight, average daily feed intake, or feed-to-egg ratio (p > 0.05). A dietary supplementation of 50 µg/kg 25-OHD3 and 2000 IU/kg VD3 provided an improved eggshell strength, thick albumen height, and Haugh unit after 12 weeks (p < 0.05). Further analysis of the blood indexes showed that alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, calcium, and phosphorus were enhanced significantly in the 50 µg/kg 25-OHD3 + 2000 IU/kg VD3 group, while the content of total bilirubin decreased significantly (p < 0.05). In addition, the 25-OHD3 addition in diets improved the calcium and phosphorus contents in the serum (p < 0.05). The concentrations of 25-OHD3, parathyroid hormones, follicle-stimulating hormone, and progesterone were increased in the 50 µg/kg 25-OHD3 + 2000 IU/kg VD3 group, and the levels of cortisol, calcitonin, bone gla protein, and endotoxin in the serum reached a minimum in the 50 µg/kg 25-OHD3 + 4000 IU/kg VD3 group (p < 0.05), which constitutes an advantage for the aged laying hens. The antioxidant enzyme activities and free radical scavenging abilities in the 50 µg/kg 25-OHD3 + 2000 IU/kg VD3 group increased markedly, and the MDA level decreased significantly in the 50 µg/kg 25-OHD3 + 4000 IU/kg VD3 group (p < 0.05). Improvements in jejunal morphology and intestinal integrity resulted in an increased villi-length-to-crypt-depth ratio in the 50 µg/kg 25-OHD3 + 2000 IU/kg VD3 group (p < 0.05). Dietary 50 µg/kg 25-OHD3 and 2000 IU/kg VD3 additions improved the tibia quality, including fresh tibia weight, strength, mineral content (Ca), and trabeculae area (p < 0.05). Taken together, compared with the dietary VD3 addition, dietary supplementation of 25-OHD3 supported a stable physiological status for sustained egg production, egg quality, and bone quality in late-phase laying hens, and the addition levels of 50 µg/kg 25-OHD3 and 2000 IU/kg VD3 had the best effect. Therefore, this could provide a theoretical basis for the use of 25-OHD3 as a substitute forVD3.

4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38233345

RESUMO

This study was aimed to explore the elevating energy utilization efficiency mechanism for the potentially ameliorative effect of guanidinoacetic acid (GAA) addition on growth performance of broilers fed a low metabolizable energy (LME) diet. A total of 576 d old broilers were randomly allocated to one of the six treatments: a basal diet (normal ME, positive control, PC), or an LME diet (50 kcal/kg reduction in ME, negative control, NC) supplemented with 0.02%, 0.04%, 0.06%, and 0.08% GAA from 1 to 42 d of age, respectively. The GAA fortification in LME diet linearly or quadratically dropped (P < 0.05) the feed conversion ratio (FCR) from 22 to 42 and 1 to 42 d of age, abdominal fat rate on day 42, serum alanine aminotransferase (ALT) on day 21, and serum creatinine (CREAN) on days 21 and 42, elevated (P < 0.05) breast muscle rate and leg muscle rate on day 42, serum creatine kinase (CK) on days 21 and 42, as well as alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) on day 21. The dietary optimal GAA levels were 0.03%-0.08% based on the best-fitted quadratic models (P < 0.03) of the above parameters. Thus, the PC, LME, and 0.04% GAA-LME groups were selected for further analysis. Serum essential amino acids (EAA) tryptophan, histidine and arginine, non-essential amino acids (NEEA) serine, glutamine and aspartic acid were significantly decreased (P < 0.05), compared to PC diet by LME or 0.04% GAA-LME diet. 0.04% GAA-LME group reversed (P < 0.05) the reduction of arginine, 3-methyhistidine, and 1-methylhistidine by LME diet. Besides, six birds at 28 d of age from LME and 0.04% GAA-LME groups were selected for energy utilization observation in calorimetry chambers. The results demonstrated that 0.04% GAA-LME group significantly improved (P < 0.05) the ME intake (MEI) and net energy (NE) compared to the LME diet. Overall, these findings suggest that 0.04% GAA is the ideal dose of broilers fed the LME diet, which can significantly improve the growth performance and carcass characteristics by modulation of creatine metabolism through elevating serum CK activity and arginine concentration.


Guanidinoacetic acid (GAA) has been found to elevate energy utilization efficiency in broilers; however, the underlying mechanisms remain unclear. We investigated the effects of GAA addition in low metabolizable energy (LME) diet on growth performance, carcass characteristics and serum biochemical indices of broilers, and found that GAA addition linearly or quadratically dropped the feed conversion ratio from 22 to 42 and 1 to 42 d of age, abdominal fat rate on day 42, serum alanine aminotransferase on day 21, and serum creatinine on days 21 and 42, elevated breast muscle and leg muscle rate on day 42, serum creatine kinase, alkaline phosphatase, as well as lactate dehydrogenase on days 21 or 22. The dietary optimal GAA levels were 0.03%-0.08% based on the best-fitted quadratic models of the above parameters. Thus, further analysis was conducted and found that 0.04% GAA reversed the reduction of arginine, 3-methyhistidine, and 1-methylhistidine and improved the ME intake and net energy compared to the LME diet. These findings suggested that 0.04% GAA is the ideal dose for enhancing the energy utilization of broilers fed the LME diet, GAA addition can significantly improve the growth performance by elevating energy utilization efficiency through modulation serum metabolite profile.


Assuntos
Galinhas , Metabolismo Energético , Glicina/análogos & derivados , Animais , Galinhas/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Suplementos Nutricionais/análise , Arginina/farmacologia , Ração Animal/análise
5.
Poult Sci ; 103(3): 103463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281332

RESUMO

The decline in eggshell quality resulting from aging hens poses a threat to the financial benefits of the egg industry. The deterioration of eggshell quality with age can be attributed to changes in its ultrastructure and chemical composition. Specific matrix proteins in eggshells have a role in controlling crystal growth and regulating structural organization. However, the variations in ultrastructure and organic matrix of eggshells in aging hens remain poorly understood. This study assessed the physical traits, mechanical quality, chemical content, as well as the microstructural and nanostructural properties of eggs from Jing Tint 6 hens at 38, 58, 78, and 108 wk of age. Subsequently, a quantitative proteomic analysis was conducted to identify differences in protein abundance in eggshells between the ages of 38 and 108 wk. The results indicated a notable decline in shell thickness, breaking strength, index, fracture toughness, and stiffness in the 108-wk-age group compared to the other groups (P < 0.05). The ultrastructure variations primarily involved an increased ratio of the mammillary layer and a reduced thickness of the effective layer of eggshell in the 108-wk-age group (P < 0.05). However, no significant differences in eggshell compositions were observed among the various age groups (P > 0.05). Proteomic analysis revealed the identification of 76 differentially expressed proteins (DEPs) in the eggshells of the 38-wk-age group and 108-wk-age group, which comprised proteins associated with biomineralization, calcium ion binding, immunity, as well as protein synthesis and folding. The downregulation of ovocleidin-116, osteopontin, and calcium-ion-related proteins, together with the upregulation of ovalbumin, lysozyme C, and antimicrobial proteins, has the potential to influence the structural organization of the eggshell. Therefore, the deterioration of eggshell quality with age may be attributed to the alterations in ultrastructure and the abundance of matrix proteins.


Assuntos
Galinhas , Casca de Ovo , Animais , Feminino , Casca de Ovo/fisiologia , Galinhas/fisiologia , Cálcio/análise , Proteômica , Óvulo
6.
Microbiome ; 11(1): 251, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951950

RESUMO

BACKGROUND: Alterations of the uterine microbiome are closely associated with various intrauterine diseases and physiological conditions, which are well-established in mammals. However, as representative oviparous animals, the research on the uterine microbial ecosystem and its functions with physiological homeostasis is limited in chickens. Additionally, continuous egg-laying disrupts the oviducal immune defenses of aged hens, susceptible to pathogen invasion, causing poor egg quality and food-borne infections in humans. Here, we investigated aging-related changes in the oviduct microbial colonization and transmission from the gut to eggs and their roles in a hen model. RESULTS: The results of 16S rDNA sequencing showed significant differences in the oviduct microbial composition between young (38 weeks) and aged (77 weeks) laying hens. SourceTracker analysis further revealed differences in the effects of microbial transmission on the oviducal microbiota between young and aged hens. Enhanced barrier defense with cell apoptosis suppression and cell cycle arrest of the uterus were observed in aged hens reducing microbial transmission from the lower to upper reproductive tract. In addition, a total of 361 significantly differential metabolites were identified using metabolomics in the aged uterine microbiota, especially in products of amino acid metabolism and biosynthesis of various secondary metabolites, which might have essential effects on cell apoptosis by regulating immune responses and cell cycle. Notably, antibiotics disrupted uterine microbiota by dietary intervention and direct perfusion did not retard aging-related physiological changes but further aggravated aging processes by disrupting the cell cycle and apoptosis. CONCLUSIONS: The microbiota continuum along the reproductive tract in aged birds differs from that in young birds, especially with a significant shift in the uterus. The aged uterine microbiota probably contributes to the regulation of cell cycle and apoptosis by microbial metabolites primarily involved in amino acid metabolism and biosynthesis of various secondary metabolites. These findings provide new insights into the roles of the reproductive tract microbiota in regulating the cell programming of the aged host, contributing to the exploration of the microbiome as a target for diagnosing aging health status and therapy for gynecological diseases in women. Video Abstract.


Assuntos
Galinhas , Microbiota , Feminino , Animais , Humanos , Microbiota/fisiologia , Útero , Apoptose , Ciclo Celular , Epitélio , Aminoácidos , Mamíferos
7.
Poult Sci ; 102(12): 103130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926011

RESUMO

Early embryonic exogenous feeding of bioactive substances is a topic of interest in poultry production, potentially improving gastrointestinal tract (GIT) development, stimulating immunization, and maximizing the protection capability of newly hatched chicks. However, the biophysiological actions and effects of in ovo administered bioactive substances are inconsistent or not fully understood. Thus, this paper summarizes the functional effects of bioactive substances and their interaction merits to augment GIT development, the immune system, and microbial homeostasis in newly hatched chicks. Prebiotics, probiotics, and synbiotics are potential bioactive substances that have been administered in embryonic eggs. Their biological effects are enhanced by a variety of mechanisms, including the production of antimicrobial peptides and antibiotic responses, regulation of T lymphocyte numbers and immune-related genes in either up- or downregulation fashion, and enhancement of macrophage phagocytic capacity. These actions occur directly through the interaction with immune cell receptors, stimulation of endocytosis, and phagocytosis. The underlying mechanisms of bioactive substance activity are multifaceted, enhancing GIT development, and improving both the innate and adaptive immune systems. Thus summarizing these modes of action of prebiotics, probiotics and synbiotics can result in more informed decisions and also provides baseline for further research.


Assuntos
Microbiota , Probióticos , Simbióticos , Animais , Galinhas/fisiologia , Imunidade nas Mucosas , Óvulo , Prebióticos , Probióticos/farmacologia , Trato Gastrointestinal
8.
Poult Sci ; 102(9): 102902, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429051

RESUMO

Driven by a global trend of applying replace-reduce-refine or 3Rs' guidance for experimental animals in life sciences, chick embryo and particularly allantois with its chorioallantoic membrane have been increasingly utilized to substitute laboratory animals, which call for more extensive and updated knowledge about this novel experimental setup. In this study, being noninvasive, nonionizing, and super-contrasting with high spatiotemporal resolutions, magnetic resonance imaging (MRI) was chosen as an imaging modality for in ovo monitoring morphologic evolution of the chick embryo, allantois, and chorioallantoic membrane longitudinally throughout embryonic day (ED) 1 until ED20. Cooled in 0°C ice bath for 60 min to reduce MRI motion artifacts, 3 chick embryos (n = 60 in total) on each ED were scanned by a clinical 3.0T MRI scanner to demonstrate 3D images of both T2- and T1-weighted imaging (T2WI, T1WI) sequences at axial, sagittal, and coronal slices. The volumes of both the entire chick embryo and allantois were semi-automatically segmented based on intensity-based thresholding and region-growing algorithms. The morphometries or quantified 3D structures were achieved by refined segmentation, and confirmed by histological analyses (one for each ED). After MRI, the rest of chick embryos (n = 40) continued for incubation. The images from ED2 to ED4 could demonstrate the structural changes of latebra, suggesting its transition into a nutrient supplying channel of yolk sac. The allantois could be recognized by MRI, and its relative volumes on each ED revealed an evolving profile peaked on ED12, with a statistically significant difference from those of earlier and later EDs (P < 0.01). The hypointensity of the yolk due to the susceptibility effect of its enriched iron content overshadowed the otherwise hyperintensity of its lipid components. The chick embryos survived prior cooling and MRI till hatching on ED21. The results could be further developed into a 3D MRI atlas of chick embryo. Clinical 3.0T MRI proved effective as a noninvasive approach to study in ovo 3D embryonic development across the full period (ED1-ED20), which can complement the present knowhow for poultry industry and biomedical science.


Assuntos
Alantoide , Galinhas , Embrião de Galinha , Animais , Imageamento por Ressonância Magnética/veterinária , Imageamento por Ressonância Magnética/métodos , Membrana Corioalantoide , Ferro
9.
Anim Nutr ; 13: 411-425, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388462

RESUMO

This study explored the effects of uterine inflammation on eggshell mineralization, ultrastructure and mechanical properties in laying hens modified by a lipopolysaccharide (LPS) challenge or dietary essential oil (EO) addition. In trial 1, a total of 72 Hy-line Brown layers at 36 wk of age were randomly assigned to 3 treatment groups (n = 8), where they were intravenously injected with phosphate buffered saline, LPS at 1 mg/kg body weight, or LPS 3 times at 24-h intervals. In trial 2, a total of 288 Hy-line Brown layers at 60 wk of age were randomly divided into 4 groups (n = 8), where they were fed basal diets supplemented with EO at 0, 50, 100 and 200 mg/kg for 12 wk. A uterine inflammation model was constructed with LPS treatment, indicated by the elevated expression of IL-1ß and TNF-α (P < 0.05) and lymphocyte infiltration. Uterine inflammation caused remarkable decreases in eggshell thickness and mechanical properties with structure deteriorations (P < 0.05). Uterine inflammation stimulated the expression of matrix proteins ovotransferrin (TF) and ovalbumin (OVAL), while depressing the mRNA levels of calbindin-1 (CALB1) and osteopontin in uterine mucosa (P < 0.05). In contrast, EO addition alleviated uterine inflammation, evidenced by depressed levels of IL-1ß and IL-6 (P < 0.05). There was a significant elevation in shell thickness and breaking strength following EO intervention (P < 0.05), and these effects were maximized at addition of 100 mg/kg. Further, EO improved shell ultrastructure including more early fusion, less type B mammillae, and increased effective thickness (P < 0.05). The alleviated inflammation decreased the expression of OVAL and TF, whereas ion transport genes like CALB1 and solute carrier family 26 member 9 were upregulated (P < 0.05). Our findings suggest that inflammatory status can impact uterine functions in calcium transport and the synthesis of matrix proteins especially such as OVAL and TF, which in turn modulates calcium precipitation and ultrastructure formation, thereby determining eggshell mechanical properties. These findings provide a novel insight into the uterine inflammation-mediated modifications of eggshell quality.

10.
J Sci Food Agric ; 103(14): 6966-6974, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37312006

RESUMO

BACKGROUND: N-acetylglutamate (NAG) is the initial and essectial substrate in the process of de novo arginine synthesis, plays an important role in intestinal development. The aim of this study was to determine the effects of in ovo feeding of NAG, 1.5 mg/egg at 17.5 days of incubation (DOI) via amnion, on hatching performance, early intestinal histomorphometry, jejunal barrier, digestive function, and growth performance of broiler chickens between 1 and 14 days of age. RESULTS: Amniotic injection of NAG had no significant effect on hatching characteristics compared with the non-injected control group (NC group). Birds in the NAG solution-injected group (NAG group) exhibited lower average daily feed intake and better feed efficiency during a period of 1-14 days. In comparison with the NC group, the NAG group had decreased crypt depth (CD) in the ileum and increased villus height (VH) / CD in the jejunum at 7 days, and decreased CD in duodenum and significantly increased VH in the jejunum at 14 days. However, the effects of in ovo supplementation with NAG on the density of goblet cells, and gene expression of mucin 2 and alkaline phosphatase were not significant. Chicks in the NAG group had a significantly higher mRNA expression level of trypsin and maltase in jejunum at 7 days than the NC group but not at 14 days. CONCLUSION: Amniotic injections of NAG (1.5 mg/egg) at 17.5 DOI could improve early growth performance of broilers during 1-14 days after hatching by accelerating the development of the intestine and enhancing jejunal digestive function. © 2023 Society of Chemical Industry.


Assuntos
Âmnio , Galinhas , Animais , Galinhas/metabolismo , Intestinos , Glutamatos/metabolismo , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais
11.
Biotechnol Genet Eng Rev ; : 1-17, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248764

RESUMO

c-Myc oncogene plays an important role in tumorigenesis, cell division cycle associated 7 (CDCA7), recently found that it is a direct target gene of c-Myc, is upregulated in many tumors, but its role in tumor progression is still poorly understood. CDCA7 expression and prognosis were analyzed in hepatocellular carcinoma using TIMER2.0 and Kaplan-Meier databases, while genomic changes were studied using cbioportal. LinkedOmics identified relevant genes and WebGestalt analyzed the associated pathways. Protein interaction networks were explored using the STRING database, and the core PPI network was analyzed with the MCODE plugin of Cytoscape. CDCA7 expression was detected in 30 paired HCC specimens by real-time PCR, and its effect on HCC cell proliferation was determined in vitro. CDCA7 expression was frequently up-regulated in human hepatocellular carcinoma (HCC), and its expression was positively correlated with prognosis. The TIMER2.0 database showed that CDCA7 was differentially expressed in hepatocellular carcinoma, with high expression in tumor tissues and low expression in normal tissues. The Kaplan-Meier database shows that high CDCA7 expression has a worse prognosis. The cBioportal database showed that the genomic change rate of CDCA7 in hepatocellular carcinoma was 2.15%, including mutations, amplifications, and deep deletions. Pathway analysis of related genes showed that CDCA7-related genes were mainly focused on cell division-related pathways. The experimental results also validate our study. CDCA7 could contribute to HCC progression and raise the possibility that CDCA7 is a potential new therapeutic target for HCC treatment.

12.
Polymers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050214

RESUMO

Rare earth chitosan chelate salt (RECC) is a potential feed additive and is a product of the chelation effect between rare earth ions and chitosan. This research study aims to explore the effects of dietary RECC on performance, egg quality, intestinal digestive function, and the immune and antioxidant capacity of laying hens in the late phase of production. A total of 360 56-week-old Dawu Jinfeng laying hens were randomly allotted into four treatment groups with six replicates per treatment and 15 birds per replicate. The laying hens were fed the basal diet supplemented with, respectively, 0 (control: CON), 100 (R1), 200 (R2), and 400 (R3) mg/kg for 8 weeks. Dietary RECC significantly improved average daily feed intake (ADFI) and average daily egg yield in both linear and quadratic manner (p < 0.05). In addition, albumen height and HU were improved significantly (p < 0.05) in a dose-dependent manner of RECC. In addition, a significant decrease (p < 0.05) in serum TP, IgA, and MDA for the R1 group and IgG in the R2 group were notable, while the increase in serum TP and decrease in T-AOC were found for R3 dietary group compared to CON (p < 0.05). The level of intestinal IL-2 and TNF-α was decreased by dietary RECC (p < 0.01). The activities of the digestive enzyme (α-Amylase, lipase, and Trypsin) showed a quadratic change with an increase and then decrease in response to increasing dose of RECC, 200 mg/kg RECC significantly increased the activity of lipase and Trypsin (p < 0.01). Supplementation of dietary RECC at low doses compared to higher doses impacted positive effects on the antioxidant capacity and immune function (p < 0.05). The utilization of RECC as a feed additive in the diet of aged laying hens exerted beneficial effects on egg production, albumen quality, humoral immunity, inflammatory response, and activity of digestive enzymes. Thus, the regulation of antioxidant capacity and duodenal function via increased enzyme activity and immune and inflammatory response were critical to the improvement of laying performance and egg quality in aged hens. The optimal supplemental dose is 100-200 mg/kg.

13.
Antioxidants (Basel) ; 12(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37107286

RESUMO

Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.

14.
Int J Biol Macromol ; 236: 123855, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36868337

RESUMO

Conventional cancer management relies on tumor type and stage for diagnosis and treatment, which leads to recurrence and metastasis and death in young women. Early detection of proteins in the serum aids diagnosis, progression, and clinical outcomes, possibly improving survival rate of breast cancer patients. In this review, we provided an insight into the influence of aberrant glycosylation on breast cancer development and progression. Examined literatures revealed that mechanisms underlying glycosylation moieties alteration could enhance early detection, monitoring, and therapeutic efficacy in breast cancer patients. This would serve as a guide for the development of new serum biomarkers with higher sensitivity and specificity, providing possible serological biomarkers for breast cancer diagnosis, progression, and treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Glicosilação , Detecção Precoce de Câncer , Biomarcadores/metabolismo , Glicoproteínas/metabolismo , Biomarcadores Tumorais/metabolismo , Polissacarídeos
15.
Front Microbiol ; 14: 1125897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910205

RESUMO

The present study was conducted to evaluate the effects of Clostridium butyricum (CB) and fructooligosaccharide (FOS) singly or combined, on performance, egg quality, amino acid digestibility, jejunal morphology, immune function and antioxidant capacity in peak-phase laying hens. A total of 288 Hy-Line Brown laying hens (30 weeks of age) were randomly assigned to 4 dietary groups that included basal diet, basal diet +0.02% of CB (zlc-17: 1 × 109 CFU/g) (PRO), basal diet +0.6% FOS (PRE), and basal diet +0.02% CB + 0.6% FOS (SYN) for 12 weeks. Each treatment had 6 replicates with 12 birds each. The results demonstrated that probiotics (PRO), prebiotics (PRE) and synbiotics (SYN) (p ≤ 0.05), respectively, exerted a positive effect on the performance and physiological response of the birds. There were significant increases in egg production rate, egg weight, egg mass, daily feed intake and reduced number of damaged eggs. and zero mortality rate due to dietary PRO, PRE and SYN (p ≤ 0.05) respectively. Also, feed conversion was improved by PRO (p ≤ 0.05). In addition, egg quality assessment showed that; eggshell quality was increased by PRO (p ≤ 0.05) and albumen indices (Haugh unit, thick albumen content, and albumen height) were enhanced by PRO, PRE and SYN (p ≤ 0.05). Further analysis showed that PRO, PRE and SYN (p ≤ 0.05), reduced heterophil to lymphocyte ratio, increased antioxidant enzymes and immunoglobulin concentration. Although spleen index was higher for PRO (p ≤ 0.05) group. The significant increase in villi height, villi width, villi height to crypt depth ratio and reduced crypt depth were obvious for PRO, PRE, and SYN (p ≤ 0.05). Furthermore, improved nutrient absorption and retention evidenced by increased digestibility of crude protein and amino acids, were notable for PRO, PRE, and SYN (p ≤ 0.05) group. Collectively, our findings revealed that dietary CB and FOS alone, or combined, enhanced productive performance, egg quality, amino acid digestibility, jejunal morphology, and physiological response in peak-phase laying hens. Our results would provide direction on nutritional strategies for gut enhancers and better physiological response of peak laying hens.

16.
Poult Sci ; 102(1): 102237, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334474

RESUMO

The current study was performed to explore the effects of dietary supplementation of Saccharomyces cerevisiae hydrolysate (SCH) on growth performance, immune function, and intestinal health in broiler chicken. A total of 300 Ross 308 male broilers (1-day-old) were randomly assigned to 2 dietary treatments including a basal diet (control group), and a basal diet supplemented with SCH feed additive (500 mg/kg in starter and grower phase, and 250 mg/kg in finisher phase). Each treatment had 6 replicates with 25 birds each. The results showed that the addition of SCH promoted growth during d 15 to 28 (P < 0.05). Although the addition of SCH had no significant effect on the intestinal relative indexes, it significantly increased the jejunum villus height (VH) and the ratio of villus height to crypt depth (VCR) of jejunum, and decreased the crypt depth (CD) of ileum (P < 0.05). Furthermore, SCH addition significantly downregulated the mRNA expression of immunomodulatory genes (TNF-α, IL-1ß, and IL-6), and upregulated the tight junction genes (ZO-1 and Claudin-1) (P < 0.05). High throughput sequencing analysis of bacterial 16S rRNA revealed that dietary SCH supplementation altered cecum microbiota. Alpha diversity analysis showed that a higher bacterial richness in cecum of broilers fed with SCH. The composition of cecum microbiota regulated by SCH addition was characterized by an increased abundance of Firmicutes and a reduced abundance of Bacteroidetes. At the genus level, dietary SCH resulted in a decrease of Bacteroides and an increase of short-chain fatty acids (SCFA) -producing bacteria including Lactobacillus and Faecalibacterium. Taken together, dietary SCH supplementation can stimulate the growth of broilers by regulating the intestinal immunity and barrier function, and improving the intestinal morphology, which may be related to the enhancement of bacterial diversity and the changes of intestinal microbial composition.


Assuntos
Galinhas , Saccharomyces cerevisiae , Animais , Masculino , Galinhas/fisiologia , RNA Ribossômico 16S , Intestinos , Suplementos Nutricionais/análise , Dieta/veterinária , Ração Animal/análise
17.
Anim Biosci ; 36(4): 619-628, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36108696

RESUMO

OBJECTIVE: This study aimed to determine and compare the apparent ileal digestibility (AID) and the standardized ileal digestibility (SID) of amino acids (AA) in soybean meal (SBM), cottonseed meal (CSM), and low-gossypol cottonseed meal (LCSM) fed to broiler chickens and laying hens. METHODS: Three semi-purified diets containing the identical crude protein concentration at 20% were formulated to contain SBM, CSM, or LCSM as the sole source of N. A N-free diet was also formulated to estimate the basal ileal endogenous losses of AA for broilers and hens. A total of 300 male Ross 308 chicks at one-day-old and 144 Hy-Line Brown laying hens at 30-week-old with initial egg production rate of 88.3%±1.0% were randomly allocated into 1 of 4 dietary treatments, respectively. RESULTS: CSM and LCSM showed more Arg and Cys+Met while less Lys, Ile, Leu, and Thr relative to SBM. Significant interactions existed between species and experimental diets for AID (except for Arg, Asp, Glu, Gly, and Pro) and SID (except for Arg, His, and Phe) of most AA. Most AA in diets showed higher AID (except for Lys) and SID (except for Lys, Met, and Ser) in broilers relative to laying hens. The AID and SID of all AA were significantly different between the three diets. In broilers, the AID and SID of most indispensable AA except for Arg in SBM and LCSM was higher than CSM. In laying hens, the AID and SID of most indispensable AA except for Arg, Met+Cys, and Phe in SBM was higher than CSM and LCSM. CONCLUSION: The accurate determination of AID and SID of AA in CSM and LCSM for broilers and layers benefits the application of CSM and LCSM in chicken diets. The cottonseed by-products CSM or LCSM showed the species-specific AA digestibility values for broilers and layers.

18.
Int J Biol Macromol ; 224: 407-421, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270403

RESUMO

Effects of dietary supplementation of yeast cell-wall polysaccharides (YCWP) on production performance, ileal microbial composition, immunomodulatory and anti-inflammatory effects in LPS-challenged laying hens, were evaluated. A total of 288 35-week-old Hy-Line Brown layers were randomly assigned into 4 dietary treatments: 0, 250, 500 and 1000 mg/kg YCWP, respectively. After a 12-week feeding period, a total of 32 birds were selected from the control (n = 16) and 1000 mg/kg YCWP group (n = 16). For each group, half (n = 8) received Escherichia coli LPS and half (n = 8) received PBS at 1 mg/kg body weight, intravenously. Results showed that YCWP enhanced feed efficiency and egg production linearly, with optimal laying performance notable in the 1000 mg/kg YCWP group. Dietary YCWP enhanced serum IgM and expression of ileal avian ß-defensin, alleviated the LPS-induced elevated levels of serum IL-6 and IL-1ß and the up-regulated expression of IL-1ß, TNF-α, IFN-γ, and IL-6 in spleen and/or ileal mucosa. Furthermore, anti-inflammatory and immunomodulatory effects of YCWP were linked with its enhancement effect on microbial diversity, proliferation of Bifidobacteriaceae, Lactocillus, Candidatus_Arthromitus, Streptomyces, Bacillaceae, and Desulfovibrio, and reduced abundance of Shigella. Therefore, YCWP has the potentials to be utilized as safe prebiotics and gut enhancer in laying hens.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Animais , Feminino , Suplementos Nutricionais/análise , Saccharomyces cerevisiae , Lipopolissacarídeos , Galinhas/metabolismo , Interleucina-6/metabolismo , Dieta , Escherichia coli , Ração Animal/análise
19.
Antioxidants (Basel) ; 11(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36552518

RESUMO

Malic acid, an intermediate of the tricarboxylic acid (TCA) cycle, is a promising acidifier with strong antioxidant capacity. This study aimed to evaluate the effects of bio-fermented malic acid (BFMA) on promoting the body health, performance and meat quality of broilers. A total of 288 one-day-old Arbor Acres male broiler chicks were randomly divided into four treatments with six replicates in each. Every replicate had 12 chicks. Four experimental diets contained 0, 4, 8, and 12 g/kg BFMA, respectively. During the 42-day trial, mortality was recorded daily, feed intake and body weight of each replicate being recorded every week. Blood samples were collected on days 21 and 42 for chemical analysis. After slaughter at the age of 42 days, the carcass traits and meat quality of the broilers were measured, breast muscle samples were collected for the determination of antioxidant capacity, and cecal digesta were pretreated for microbiota analysis. Dietary BFMA significantly increased feed intake and daily gain, and decreased feed conversion ratio and death and culling ratio of the broilers at the earlier stage. The water-holding capacity of breast muscle indicated by the indexes of dripping loss and cooking loss was significantly increased by BFMA, especially at the addition level of 8 g/kg. Dietary BFMA significantly decreased the activity of superoxide dismutase and contents of immunoglobulin A and glutathione, and increased contents of immunoglobulin G and M in serum of the broilers. The contents of glutathione, inosinic acid, and total antioxidant capacity and the activities of glutathione-Px and superoxide dismutase were significantly increased by dietary BFMA, with the level of 8 g/kg best. The diversity of cecal microbiota of broilers was obviously altered by BFMA. In conclusion, as one of several acidifiers, addition of BFMA in diets could improve the performance and body health of broilers, probably by reinforcing immunity and perfecting cecal microbiota structure. As one of the intermediates of the TCA cycle, BFMA increases the water-holding capacity of breast muscle of broilers, probably through reducing lactate accumulates and enhancing antioxidant capacity.

20.
Foods ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36553769

RESUMO

The focus of this study was to compare the yolk flavor of eggs from laying hens of Chinese indigenous and commercial, based on detection of volatile compounds, fatty acids, and texture characteristics determination, using sensory evaluation, artificial sensors (electronic nose (E-nose), electronic tongue (E-tongue)), and gas chromatography-mass spectrometry (GC-MS). A total of 405 laying hens (Hy-Line Brown (n = 135), Xueyu White (n = 135), and Xinyang Blue (n = 135)) were used for the study, and 540 eggs (180 per breed) were collected within 48 h of being laid and used for sensory evaluation and the instrument detection of yolk flavor. Our research findings demonstrated significant breed differences for sensory attributes of egg yolk, based on sensory evaluation and instrument detection. The milky flavor, moisture, and compactness scores (p < 0.05) of egg yolk from Xueyu White and Xinyang Blue were significantly higher than that of Hy-Line Brown. The aroma preference scores of Xinyang Blue (p < 0.05) were significantly higher, compared to Hy-Line Brown and Xueyu White. The sensor responses of WIW and W2W from E-nose and STS from E-tongue analysis were significantly higher foe egg yolks of Hy-Line Brown (p < 0.05), compared to that of Xueyu White and Xinyang Blue. Additionally, the sensor responses of umami from E-tongue analysis, was significantly higher for egg yolks of Xueyu White (p < 0.05), compared to that of Hy-Line Brown and Xinyang Blue. Besides, the contents of alcohol and fatty acids, such as palmitic acid, oleic acid, and arachidonic acid, in egg yolk were positively correlated with egg flavor. The texture analyzer showed that springiness, gumminess, and hardness of Hy-Line Brown and Xueyu White (p < 0.05) were significantly higher, compared to Xinyang Blue. The above findings demonstrate that the egg yolk from Chinese indigenous strain had better milky flavor, moisture, and compactness, as well as better texture. The egg yolk flavors were mainly due to presence of alcohol and fatty acids, such as palmitic acid, oleic acid, and arachidonic acid, which would provide research direction on improvement in egg yolk flavor by nutrition. The current findings validate the strong correlation between the results of egg yolk flavor and texture, based on sensory evaluation, artificial sensors, and GC-MS. All these indicators would be beneficial for increased preference for egg yolk flavor by consumers and utilization by food processing industry, as well as a basis for the discrimination of eggs from different breeds of laying hens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...