Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(43): 26853-26862, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36317503

RESUMO

The emergence and development of radical luminescent materials is a huge breakthrough toward high-performance organic light-emitting diodes (OLEDs) without spin-statistical limits. Herein, we design a series of radicals based on tris(2,4,6-trichlorophenyl)methyl (TTM) by combining skeleton-engineering and periphery-engineering strategies, and present some insights into how different chemical modifications can modulate the chemical stability and luminescence properties of radicals by quantum chemistry methods. Firstly, through the analysis of the geometric structure changes from the lowest doublet excited state (D1) to the doublet ground state (D0) states, the emission energy differences between the BN orientation isomers are explained, and it is revealed that the radical with a smaller dihedral angle difference can more effectively suppress the geometric relaxation of the excited states and bring a higher emission energy. Meanwhile, a comparison of the excited state properties in different radicals can help us to disclose the luminescence behavior, that is, the enhanced luminescent intensity of the radical is caused by the intensity borrowing between the charge transfer (CT) state and the dark locally excited (LE) state. In addition, an efficient algorithm for calculating the internal conversion rate (kIC) is introduced and implemented, and the differences in kIC values between designed radicals are explained. More specifically, the delocalization of hole and electron wave functions can reduce nonadiabatic coupling matrix elements (NACMEs), thus hindering the non-radiative decay process. Finally, the double-regulation of chemical stability and luminescence properties was realized through the synergistic effect of skeleton-engineering and periphery-engineering, and to screen the excellent doublet emitter (BN-41-MPTTM) theoretically.

2.
Heliyon ; 8(11): e11358, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387510

RESUMO

In this study, a couple of tetradentate Pt(II) enantiomers ((-)-1 and (+)-1) and a couple of tetradentate Pt(IV) enantiomers ((-)-2 and (+)-2) containing fused 5/6/6 metallocycles have been synthesized by controlling reaction conditions. Two valence forms could transform into each other through mild chemical oxidants and reductants. Single-crystal X-ray diffraction confirms the structures of (-)-1 and (-)-2. The coordination sphere of the Pt(II) cation in (-)-1 displays a distorted square-planar geometry and a platinum centroid helix chirality. In contrast, the structure of (-)-2 reveals a distorted octahedral geometry. The solution and the solid of (-)-1 are highly luminescent. Complex (-)-1 shows a prominent aggregation-induced emission enhancement (AIEE) behavior in DMSO/water solution with emission quantum yield (Φ em) up to 73.2%. Furthermore, highly phosphorescent Pt(II) enantiomers exhibit significant circularly polarized luminescence (CPL) with a dissymmetry factor (g lum) of order 10-3 in CH2Cl2 solutions at room temperature. Symmetrically appreciable CPL signals are observed for the enantiomers (-)-1 and (+)-1.

3.
Chem Asian J ; 12(1): 145-158, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27797451

RESUMO

Two classes of cationic palladium(II) acetylide complexes containing pincer-type ligands, 2,2':6',2''-terpyridine (terpy) and 2,6-bis(1-butylimidazol-2-ylidenyl)pyridine (C^N^C), were prepared and structurally characterized. Replacing terpy with the strongly σ-donating C^N^C ligand with two N-heterocyclic carbene (NHC) units results in the PdII acetylide complexes displaying phosphorescence at room temperature and stronger intermolecular interactions in the solid state. X-ray crystal structures of [Pd(terpy)(C≡CPh)]PF6 (1) and [Pd(C^N^C)(C≡CPh)]PF6 (7) reveal that the complex cations are arranged in a one-dimensional stacking structure with pair-like PdII ⋅⋅⋅PdII contacts of 3.349 Šfor 1 and 3.292 Šfor 7. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were used to examine the electronic properties. Comparative studies of the [Pt(L)(C≡CPh)]+ analogs by 1 H NMR spectroscopy shed insight on the intermolecular interactions of these PdII acetylide complexes. The strong Pd-Ccarbene bonds render 7 and its derivative sufficiently stable for investigation of photo-cytotoxicity under cellular conditions.


Assuntos
Complexos de Coordenação/farmacologia , Paládio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Piridinas/farmacologia , Teoria Quântica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Paládio/química , Processos Fotoquímicos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Piridinas/química , Relação Estrutura-Atividade
4.
J Phys Chem Lett ; 6(15): 2950-8, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26267187

RESUMO

It is well known that the aluminum cathode performs dramatically better when a thin lithium fluoride (LiF) layer inserted in organic electronic devices. The doping effect induced by the librated Li atom via the chemical reactions producing AlF3 as byproduct was previously proposed as one of possible mechanisms. However, the underlying mechanism discussion is quite complicated and not fully understood so far, although the LiF interlayer is widely used. In this paper, we perform theoretical calculations to consider the reactions between an aluminum atom and distinct LiF clusters. The reaction pathways of the Al-(LiF)n (n = 2, 4, 16) systems were discovered and the energetics were theoretically evaluated. The release of Li atom and the formation of AlF3 were found in two different chemical reaction routes. The undissociated Al-(LiF)n systems have chances to change to some structures with loosely bound electrons. Our findings about the interacted Al-(LiF)n systems reveal new insights into the LiF interlayer effects in organic electronics applications.

5.
Phys Chem Chem Phys ; 17(6): 4771, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25575215

RESUMO

Correction for 'Theoretical study and design of multifunctional phosphorescent platinum(ii) complexes containing triarylboron moieties for efficient OLED emitters' by Yong Wu et al., Phys. Chem. Chem. Phys., 2015, DOI: .

6.
Phys Chem Chem Phys ; 17(4): 2438-46, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25491405

RESUMO

The geometries, electronic structures, photophysical properties and spin-orbit coupling (SOC) effects in the radiative process for the recently synthesized complexes (Bppy)Pt(acac) (1) and (BNppy)Pt(acac) (2) as well as the designed complexes 3-6 were investigated by DFT and TD-DFT calculations, to reveal the influences of the functional ligands on charge injection ability and phosphorescence efficiency of emitters. It is found that compared with electron acceptor complex 1, complexes 2-6 have lower ionization potentials and comparable high electronic affinities, which are suited for bipolar luminescent materials. The results also demonstrated that Bppy complexes 1, 5 and 6 have more (3)MLCT compositions in T1 emitting states compared with BNppy complexes 2-4, which results in strong SOC and fast kr. Thus, the phosphorescence efficiency of 1 is higher than that of 2. In addition, 5 and 6 have the balanced charge transport and better hole injection ability when the hole-transporting ligand is incorporated to 1. Therefore, 5 and 6 can server as promising candidates for efficient multifunctional phosphorescent OLED emitters owing to their ambipolar characters, balanced charge carrier injection/transport features and high phosphorescence quantum efficiency.

7.
Phys Chem Chem Phys ; 15(7): 2351-9, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23295787

RESUMO

We studied the electronic structures of a series of fluorene derivatives (p/mPODPFs and p/mPOAPFs) using density functional theory calculations and investigated their performances as host materials in organic light-emitting diodes from three aspects, i.e. triplet energy, ability of charge injection from neighboring organic layer or electrode, and match of the hosts and the reference guests (FIrpic and FCNIr) for efficient energy transfer (EF). Especially for the last aspect, the singlet/triplet (S(1)/T(1)) energies as well as the simulated host emission and guest absorption spectra are investigated to predict the possible emission mechanisms in the host-guest system and therefore to pursue the most suitable host for (deep) blue guest. From the investigated results, we deduced that pPODPF and pPOAPF are suitable for sky-blue FIrpic due to feasible Förster/Dexter energy transfers from pPODPF/pPOAPF to FIrpic, which agrees well with the experimental results. Furthermore, the higher external quantum efficiency (20.6%) of the pPOAPF-based device than that of the pPODPF-based device (13.2%) in experiments was inferred to be attributed to the matching S(1) energies between pPOAPF and FIrpic as well as good hole/electron injection abilities of pPOAPF in spite of a smaller overlap between the pPOAPF emission and FIrpic absorption spectra. By contrast, mPOAPF and mPODPF, designed in the work, may match with deep-blue FCNIr. In particular, mPOAPF may exhibit good performance as a host material for deep blue FCNIr as a consequence of its own balanced hole/electron injection ability and the matching S(1)/T(1) energies between mPOAPF and FCNIr.

8.
J Mol Graph Model ; 33: 26-34, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22138014

RESUMO

The vertical excitation energies of tetrathiafulvalene (TTF)-annulated zinc porphyrazine (ZnPzTTF) were investigated using time-dependent density functional theory (TDDFT) calculations and compared to the experimental UV-vis spectra. To examine the effects of the aza substitutions and TTF groups on the molecular properties, zinc complexes of porphyrin (ZnP), porphyrazine (ZnPz) and tetraTTF-annulated porphyrin (ZnPTTF) were also selected for comparison. It was shown that numerous electronic transitions with TTF-to-porphyrin or porphyrazine charge transfer character exist and the Q band of ZnPzTTF is dominated by TTF-to-porphyrazine charge transfer transition mixed with porphyrazine core unit itself except for classic porphyrazine π→π* transitions. The Q band of ZnPzTTF mixes with other configurations, which breaks down the Gouterman's classic four-orbital model for the spectral interpretation. The data suggest that TDDFT/SAOP performs best for Q and B bands of ZnPzTTF with the maximum error in excitation energy being 0.17 eV. The CAM-B3LYP, ωB97XD and M06-2X calculations qualitatively predict that the low-lying electronic transitions of ZnPzTTF with TTF-to-porphyrazine charge transfer character located below the Q band. The broad and intense red-shifted Q band suggests that ZnPzTTF can be a candidate for dye-sensitized solar cells.


Assuntos
Compostos Heterocíclicos/química , Metaloporfirinas/química , Zinco/química , Modelos Moleculares , Porfirinas/química , Espectrofotometria Ultravioleta
9.
Phys Chem Chem Phys ; 14(5): 1685-93, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22193557

RESUMO

Compared with red and green phosphorescent organic light-emitting diodes (PHOLEDs), efficient blue PHOLEDs are still scarce, because it is difficult for the host materials for blue phosphors to achieve a trade-off between a wide triplet energy and good charge injection properties. We theoretically studied a series of hybrid phosphine oxide/sulfide-phenylcarbazole host molecules (PO(S)PhCBZs) for blue phosphors through different linkage modes between phenylcarbazole (PhCBZ) and phosphine oxide/sulfide (PO/PS) moieties. The results indicate that the singlet excitons of all PO(S)-PhCBZs are delocalized over the entire molecule with intramolecular charge transfer (ICT) character and different linkage modes cause various degrees of ICT, which determines the injection abilities of carriers from neighboring layers following the order: PO-Phs (PO linked to the phenyl of PhCBZ) > para-POs (PO linked to the para-positions of PhCBZ) > meta-POs (PO linked to the meta-positions of PhCBZ). By contrast, the triplet excitons are confined to the carbazole unit for all PO(S)-PhCBZs. High triplet energies (E(T)) are therefore kept up for all systems, except for para-POs showing a slight drop in E(T) due to the delocalization of their triplet excitons to the phenyl moiety of PhCBZ. All hybrid PO(S)-PhCBZs, especially PO(s)-Phs, exhibit an enhancement in electron injection and triplet energy compared with the most widely used host material (N,N-dicarbazolyl-3,5-benzene) for blue PHOLEDs, and thereby have great potential for application in highly efficient light emitting diodes.

10.
Dalton Trans ; 40(17): 4480-8, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21409240

RESUMO

The electronic structures and photophysical properties of eight Pt-complexes with different N-heterocyclic carbene ligands and potential to serve as light emitting diode materials were investigated by density functional theory and time-dependent density functional theory, employing the BP86 functional for geometry optimisations, SAOP potential for excited state calculations and all-electron TZ2P basis set throughout. Non-radiative and radiative decay rate constants were determined for each system through analyses of the geometric relaxations, d-orbital splitting and spin-orbit couplings at the optimised S(0) and T(1) geometries. Three Pt-systems bound to two N-heterocyclic carbenes were shown to be nonemissive, while a fourth was shown to be emissive from the T(1) excited state. Similar T(1)-initated emission was observed for three other Pt-systems investigated, each bound to four N-heterocyclic carbenes, while a fourth similarly tetra-ligated system showed T(2)-initation of emission. The results highlight the coupling of ligand-identity to photophysical properties and more importantly, the potential for rational optimisation and tuning of emission wavelengths and phosphorescent efficiencies. Encouragingly, two of the tetra-N-heterocyclic carbene ligated systems show strong potential to serve as highly-efficient blue and green light emitting materials, respectively.

11.
Angew Chem Int Ed Engl ; 48(29): 5291-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19536803

RESUMO

Top down goes bottom up: A family of microporous interpenetrating diamond frameworks can be constructed from a pentanuclear tetrahedral complex with nitrate groups at the apical positions as an inorganic precursor. A "bottom-up" methodology was used for substitution of the nitrate groups by linear ditopic carboxylate ligands (see picture). The Langmuir surface area of the resulting frameworks is higher than that of classical zeolites.

12.
J Phys Chem A ; 112(35): 8086-92, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18693710

RESUMO

Geometry structures, electronic spectra, and third-order nonlinear optical (NLO) properties of Fe(eta (5)-C 55X 5) 2 (X = CH, N, B) have first been investigated by time-dependent density functional theory. We analyzed the intramolecular interactions between ferrocene and the C 50 moiety. The calculated electronic absorption spectrum indicates that the short wavelength transitions are ascribed to the C 50 moiety mixed charge transfer transition of ferrocene itself, while the low energy excitation transitions are ascribed to the unique charge transfer transition from ferrocene to C 50 moiety in these systems. The third-order polarizability gamma values based on sum of states (SOS) method show that this class of ferrocene/fullerene hybrid molecule possesses a remarkably large third-order NLO response, especially for Fe(eta (5)-C 55B 5) 2 with the static third-order polarizability (gamma av) computed to be -10410 x 10 (-36) esu and the intrinsic second hypepolarizability to be 0.250. Thus, these complexes have the potential to be used for excellent third-order nonlinear optical materials. Analysis of the major contributions to the gamma av value suggest that the charge transfer from ferrocene to C 50 moiety along the z-axis (through Fe atom and the centers of two hybrid fullerenes) play the key role in the NLO response. Furthermore, boron substitution is an effective way of enhancing the optical nonlinearity compared to CH and N substitution, owing to smaller energy gap and better conjugation through the whole molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...