Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 768, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36418939

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis. As a potential zoonotic pathogen, MAP also seriously threatens human health and social security. At present, long non-coding RNA (lncRNA) has attracted wide attention as an useful biomarker in various diseases. Therefore, our study analyzed the lncRNA expression profiles and lncRNA-mRNA regulatory network of MAP infected bovine monocytes-macrophages and uninfected bovine cells by high-throughput sequencing. A total of 4641 differentially expressed lncRNAs genes were identified, including 3111 up-regulated genes and 1530 down-regulated genes. In addition, lncRNA-mRNA interaction analysis was performed to predict the target genes of lncRNA. Among them, after MAP infection, 86 lncRNAs targeted to mRNA, of which only 6 genes were significantly different. The results of Gene Ontology (GO) enrichment analysis showed that the differentially expressed genes significantly enriched in functional groups were related to immune regulation. Multiple signal pathways including NF-κB, NOD-like receptor, Cytokine-cytokine receptor, Toll-like receptor signaling pathway, Chemokine signaling pathway, and other important biochemical, metabolic and signal transduction pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG). In this study, analysis of macrophage transcriptomes in response to MAP infection is expected to provide key information to deeply understand role of the pathogen in initiating an inappropriate and persistent infection in susceptible hosts and molecular mechanisms that might underlie the early phases of paratuberculosis.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , RNA Longo não Codificante , Animais , Bovinos , Macrófagos/metabolismo , Monócitos , Mycobacterium avium subsp. paratuberculosis/fisiologia , Paratuberculose/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
2.
Front Microbiol ; 12: 796922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046920

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the pathogen of Johne's disease (paratuberculosis), which mainly causes chronic infectious granulomatous enteritis in ruminants and has brought huge economic losses to animal husbandry. As a specific intracellular pathogen, when MAP invades the body, it is internalized by macrophages where it is able to replicate by inhibition of the phagosome maturation, escaping the host immune system and surviving, which leads to the spread of the disease. More recent studies have shown that circRNA is involved in many pathological and physiological processes of the body as the molecular sponge of miRNA, the scaffold of RNA binding protein and having the characteristic of being able to translate into protein. In this study, the mRNA and circRNA expression profiles of MAP-infected bovine monocyte-macrophages and uninfected bovine cells were analyzed by high-throughput sequencing. A total of 618 differentially expressed mRNA were screened out, including 322 upregulated mRNA and 296 downregulated mRNA. In addition, the analysis of circRNA differential expression profile showed 39 differentially expressed genes including 12 upregulated and 27 downregulated genes. Moreover, differential genes belonging to cytokine activity, chemokine activity, inflammatory reaction, apoptosis, and other functional groups related to macrophage immune response were significantly enriched in Gene Ontology (GO). Multiple signal pathways including NF-κB, MAPK, Toll-like receptor, IL-17, JAK-STAT, and other signaling pathways related to activating macrophage immune response were significantly enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, RT-qPCR technology verified the accuracy of the mRNA sequencing results. In this study, we have obtained the transcriptome information of mRNA and circRNA of bovine monocyte-macrophage infected with MAP. These results will provide data support for the further study of mRNA-miRNA-circRNA network and immune escape mechanism of MAP and will enrich the knowledge of the molecular immune mechanisms of Johne's disease as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA