Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Nat Commun ; 15(1): 5147, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886343

RESUMO

Bacteria-mediated cancer therapeutic strategies have attracted increasing interest due to their intrinsic tumor tropism. However, bacteria-based drugs face several challenges including the large size of bacteria and dense extracellular matrix, limiting their intratumoral delivery efficiency. In this study, we find that hyperbaric oxygen (HBO), a noninvasive therapeutic method, can effectively deplete the dense extracellular matrix and thus enhance the bacterial accumulation within tumors. Inspired by this finding, we modify Escherichia coli Nissle 1917 (EcN) with cypate molecules to yield EcN-cypate for photothermal therapy, which can subsequently induce immunogenic cell death (ICD). Importantly, HBO treatment significantly increases the intratumoral accumulation of EcN-cypate and facilitates the intratumoral infiltration of immune cells to realize desirable tumor eradication through photothermal therapy and ICD-induced immunotherapy. Our work provides a facile and noninvasive strategy to enhance the intratumoral delivery efficiency of natural/engineered bacteria, and may promote the clinical translation of bacteria-mediated synergistic cancer therapy.


Assuntos
Escherichia coli , Oxigenoterapia Hiperbárica , Imunoterapia , Terapia Fototérmica , Oxigenoterapia Hiperbárica/métodos , Animais , Imunoterapia/métodos , Camundongos , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/imunologia , Feminino , Camundongos Endogâmicos BALB C , Matriz Extracelular/metabolismo
2.
mBio ; 15(6): e0052124, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38700314

RESUMO

Despite its high mortality, specific and effective drugs for sepsis are lacking. Decoy receptor 3 (DcR3) is a potential biomarker for the progression of inflammatory diseases. The recombinant human DcR3-Fc chimera protein (DcR3.Fc) suppresses inflammatory responses in mice with sepsis, which is critical for improving survival. The Fc region can exert detrimental effects on the patient, and endogenous peptides are highly conducive to clinical application. However, the mechanisms underlying the effects of DcR3 on sepsis are unknown. Herein, we aimed to demonstrate that DcR3 may be beneficial in treating sepsis and investigated its mechanism of action. Recombinant DcR3 was obtained in vitro. Postoperative DcR3 treatment was performed in mouse models of lipopolysaccharide- and cecal ligation and puncture (CLP)-induced sepsis, and their underlying molecular mechanisms were explored. DcR3 inhibited sustained excessive inflammation in vitro, increased the survival rate, reduced the proinflammatory cytokine levels, changed the circulating immune cell composition, regulated the gut microbiota, and induced short-chain fatty acid synthesis in vivo. Thus, DcR3 protects against CLP-induced sepsis by inhibiting the inflammatory response and apoptosis. Our study provides valuable insights into the molecular mechanisms associated with the protective effects of DcR3 against sepsis, paving the way for future clinical studies. IMPORTANCE: Sepsis affects millions of hospitalized patients worldwide each year, but there are no sepsis-specific drugs, which makes sepsis therapies urgently needed. Suppression of excessive inflammatory responses is important for improving the survival of patients with sepsis. Our results demonstrate that DcR3 ameliorates sepsis in mice by attenuating systematic inflammation and modulating gut microbiota, and unveil the molecular mechanism underlying its anti-inflammatory effect.


Assuntos
Ceco , Modelos Animais de Doenças , Membro 6b de Receptores do Fator de Necrose Tumoral , Sepse , Animais , Sepse/tratamento farmacológico , Sepse/microbiologia , Camundongos , Membro 6b de Receptores do Fator de Necrose Tumoral/genética , Membro 6b de Receptores do Fator de Necrose Tumoral/metabolismo , Ceco/cirurgia , Humanos , Ligadura , Punções , Masculino , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal , Citocinas/metabolismo , Lipopolissacarídeos , Apoptose/efeitos dos fármacos , Inflamação
3.
Sci Transl Med ; 16(747): eadl1408, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748772

RESUMO

Essential tremor (ET) is the most prevalent movement disorder, characterized primarily by action tremor, an involuntary rhythmic movement with a specific frequency. However, the neuronal mechanism underlying the coding of tremor frequency remains unexplored. Here, we used in vivo electrophysiology, optogenetics, and simultaneous motion tracking in the Grid2dupE3 mouse model to investigate whether and how neuronal activity in the olivocerebellum determines the frequency of essential tremor. We report that tremor frequency was encoded by the temporal coherence of population neuronal firing within the olivocerebellums of these mice, leading to frequency-dependent cerebellar oscillations and tremors. This mechanism was precise and generalizable, enabling us to use optogenetic stimulation of the deep cerebellar nuclei to induce frequency-specific tremors in wild-type mice or alter tremor frequencies in tremor mice. In patients with ET, we showed that deep brain stimulation of the thalamus suppressed tremor symptoms but did not eliminate cerebellar oscillations measured by electroencephalgraphy, indicating that tremor-related oscillations in the cerebellum do not require the reciprocal interactions with the thalamus. Frequency-disrupting transcranial alternating current stimulation of the cerebellum could suppress tremor amplitudes, confirming the frequency modulatory role of the cerebellum in patients with ET. These findings offer a neurodynamic basis for the frequency-dependent stimulation of the cerebellum to treat essential tremor.


Assuntos
Cerebelo , Tremor Essencial , Neurônios , Núcleo Olivar , Tremor Essencial/fisiopatologia , Animais , Humanos , Núcleo Olivar/fisiopatologia , Cerebelo/fisiopatologia , Camundongos , Masculino , Optogenética , Feminino , Estimulação Encefálica Profunda , Pessoa de Meia-Idade , Eletroencefalografia , Idoso
4.
Anal Chem ; 96(16): 6426-6435, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38604773

RESUMO

Sensors designed based on the trans-cleavage activity of CRISPR/Cas12a systems have opened up a new era in the field of biosensing. The current design of CRISPR/Cas12-based sensors in the "on-off-on" mode mainly focuses on programming the activator strand (AS) to indirectly switch the trans-cleavage activity of Cas12a in response to target information. However, this design usually requires the help of additional auxiliary probes to keep the activator strand in an initially "blocked" state. The length design and dosage of the auxiliary probe need to be strictly optimized to ensure the lowest background and the best signal-to-noise ratio. This will inevitably increase the experiment complexity. To solve this problem, we propose using AS after the "RESET" effect to directly regulate the Cas12a enzymatic activity. Initially, the activator strand was rationally designed to be embedded in a hairpin structure to deprive its ability to activate the CRISPR/Cas12a system. When the target is present, target-mediated strand displacement causes the conformation change in the AS, the hairpin structure is opened, and the CRISPR/Cas12a system is reactivated; the switchable structure of AS can be used to regulate the degree of activation of Cas12a according to the target concentration. Due to the advantages of low background and stability, the CRISPR/Cas12a-based strategy can not only image endogenous biomarkers (miR-21) in living cells but also enable long-term and accurate imaging analysis of the process of exogenous virus invasion of cells. Release and replication of virus genome in host cells are indispensable hallmark events of cell infection by virus; sensitive monitoring of them is of great significance to revealing virus infection mechanism and defending against viral diseases.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , MicroRNAs , Sistemas CRISPR-Cas/genética , Técnicas Biossensoriais/métodos , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , Regulação Alostérica , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células HEK293
5.
Int J Biol Macromol ; 265(Pt 2): 130710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492701

RESUMO

Developing a polymer-based photocrosslinked 3D printable scaffolds comprised of gelatin methacryloyl (G) and hyaluronic acid methacryloyl (H) incorporated with two molecular weights of polyethylene glycol diacrylate (P) of various concentrations that enables rabbit adipose-derived stem cells (rADSCs) to survive, grow, and differentiate into smooth muscle cells (SMCs). Then, the chemical modification and physicochemical properties of the PGH bioinks were evaluated. The cell viability was assessed via MTT, CCK-8 assay and visualized employing Live/Dead assay. In addition, the morphology and nucleus count of differentiated SMCs were investigated by adopting TRAP (tartrate-resistant acid phosphatase) staining, and quantitative RT-PCR analysis was applied to detect gene expression using two different SMC-specific gene markers α-SMA and SM-MHC. The SMC-specific protein markers namely α-SMA and SM-MHC were applied to investigate SMC differentiation ability by implementing Immunocytofluorescence staining (ICC) and western blotting. Moreover, the disk, square, and tubular cellular models of PGH7 (GelMA/HAMA=2/1) + PEGDA-8000 Da, 3% w/v) hybrid bioink were printed using an extrusion bioprinting and cell viability of rADSCs was also analysed within 3D printed square construct practising Live/Dead assay. The results elicited the overall viability of SMCs, conserving its phenotype in biocompatible PGH7 hybrid bioink revealing its great potential to regenerate SMCs associated organs repair.


Assuntos
Hidrogéis , Alicerces Teciduais , Animais , Coelhos , Alicerces Teciduais/química , Hidrogéis/química , Gelatina/química , Músculo Liso , Fenótipo , Células-Tronco , Impressão Tridimensional , Engenharia Tecidual/métodos
6.
Sci Rep ; 14(1): 3709, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355636

RESUMO

Lung adenocarcinoma (LUAD) is one of the sole causes of death in lung cancer patients. This study combined with single-cell RNA-seq analysis to identify tumor stem-related prognostic models to predict the prognosis of lung adenocarcinoma, chemotherapy agents, and immunotherapy efficacy. mRNA expression-based stemness index (mRNAsi) was determined by One Class Linear Regression (OCLR). Differentially expressed genes (DEGs) were detected by limma package. Single-cell RNA-seq analysis in GSE123902 dataset was performed using Seurat package. Weighted Co-Expression Network Analysis (WGCNA) was built by rms package. Cell differentiation ability was determined by CytoTRACE. Cell communication analysis was performed by CellCall and CellChat package. Prognosis model was constructed by 10 machine learning and 101 combinations. Drug predictive analysis was conducted by pRRophetic package. Immune microenvironment landscape was determined by ESTIMATE, MCP-Counter, ssGSEA analysis. Tumor samples have higher mRNAsi, and the high mRNAsi group presents a worse prognosis. Turquoise module was highly correlated with mRNAsi in TCGA-LUAD dataset. scRNA analysis showed that 22 epithelial cell clusters were obtained, and higher CSCs malignant epithelial cells have more complex cellular communication with other cells and presented dedifferentiation phenomenon. Cellular senescence and Hippo signaling pathway are the major difference pathways between high- and low CSCs malignant epithelial cells. The pseudo-temporal analysis shows that cluster1, 2, high CSC epithelial cells, are concentrated at the end of the differentiation trajectory. Finally, 13 genes were obtained by intersecting genes in turquoise module, Top200 genes in hdWGCNA, DEGs in high- and low- mRNAsi group as well as DEGs in tumor samples vs. normal group. Among 101 prognostic models, average c-index (0.71) was highest in CoxBoost + RSF model. The high-risk group samples had immunosuppressive status, higher tumor malignancy and low benefit from immunotherapy. This work found that malignant tumors and malignant epithelial cells have high CSC characteristics, and identified a model that could predict the prognosis, immune microenvironment, and immunotherapy of LUAD, based on CSC-related genes. These results provided reference value for the clinical diagnosis and treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Análise da Expressão Gênica de Célula Única , Adenocarcinoma de Pulmão/genética , Células Epiteliais , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
7.
Brain Behav ; 14(1): e3348, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376042

RESUMO

BACKGROUND: Predicting suicide is a pressing issue among older adults; however, predicting its risk is difficult. Capitalizing on the recent development of machine learning, considerable progress has been made in predicting complex behavior such as suicide. As depression remained the strongest risk for suicide, we aimed to apply deep learning algorithms to identify suicidality in a group with late-life depression (LLD). METHODS: We enrolled 83 patients with LLD, 35 of which were non-suicidal and 48 were suicidal, including 26 with only suicidal ideation and 22 with past suicide attempts, for resting-state functional magnetic resonance imaging (MRI). Cross-sample entropy (CSE) analysis was conducted to examine the complexity of MRI signals among brain regions. Three-dimensional (3D) convolutional neural networks (CNNs) were used, and the classification accuracy in each brain region was averaged to predict suicidality after sixfold cross-validation. RESULTS: We found brain regions with a mean accuracy above 75% to predict suicidality located mostly in default mode, fronto-parietal, and cingulo-opercular resting-state networks. The models with right amygdala and left caudate provided the most reliable accuracy in all cross-validation folds, indicating their neurobiological importance in late-life suicide. CONCLUSION: Combining CSE analysis and the 3D CNN, several brain regions were found to be associated with suicidality.


Assuntos
Ideação Suicida , Suicídio , Humanos , Idoso , Depressão/diagnóstico por imagem , Tentativa de Suicídio , Imageamento por Ressonância Magnética , Entropia , Redes Neurais de Computação
8.
Anal Chem ; 96(6): 2692-2701, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38305871

RESUMO

In recent years, the CRISPR/Cas12a-based sensing strategy has shown significant potential for specific target detection due to its rapid and sensitive characteristics. However, the "always active" biosensors are often insufficient to manipulate nucleic acid sensing with high spatiotemporal control. It remains crucial to develop nucleic acid sensing devices that can be activated at the desired time and space by a remotely applied stimulus. Here, we integrated photoactivation with the CRISPR/Cas12a system for DNA and RNA detection, aiming to provide high spatiotemporal control for nucleic acid sensing. By rationally designing the target recognition sequence, this photoactivation CRISPR/Cas12a system could recognize HPV16 and survivin, respectively. We combined the lateral flow assay strip test with the CRISPR/Cas12a system to realize the visualization of nucleic acid cleavage signals, displaying potential instant test application capabilities. Additionally, we also successfully realized the temporary control of its fluorescent sensing activity for survivin by photoactivation in vivo, allowing rapid detection of target nucleic acids and avoiding the risk of contamination from premature leaks during storage. Our strategy suggests that the CRISPR/Cas12a platform can be triggered by photoactivation to sense various targets, expanding the technical toolbox for precise biological and medical analysis. This study represents a significant advancement in nucleic acid sensing and has potential applications in disease diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Survivina/genética , Biomarcadores , Testes Imediatos
9.
Insights Imaging ; 15(1): 6, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191718

RESUMO

OBJECTIVES: To evaluate the clinical and non-contrast computed tomography (CT) features of patients with benign pulmonary subsolid nodules (SSNs) with a solid component ≤ 5 mm and their development trends via follow-up CT. METHODS: We retrospectively collected 436 data from patients who had SSNs with a solid component ≤ 5 mm, including 69 with absorbable benign SSNs (AB-SSNs), 70 with nonabsorbable benign SSNs (NB-SSNs), and 297 with malignant SSNs (M-SSNs). Models 1, 2, and 3 for distinguishing the different types of SSNs were then developed and validated. RESULTS: Patients with AB-SSNs were younger and exhibited respiratory symptoms more frequently than those with M-SSNs. The frequency of nodules detected during follow-up CT was in the following order: AB-SSNs > NB-SSNs > M-SSNs. NB-SSNs were smaller than M-SSNs, and ill-defined margins were more frequent in AB-SSNs than in NB-SSNs and M-SSNs. Benign SSNs exhibited irregular shape, target sign, and lower CT values more frequently compared to M-SSNs, whereas the latter demonstrated bubble lucency more commonly compared to the former. Furthermore, AB-SSNs showed more thickened interlobular septa and satellite lesions than M-SSNs and M-SSNs had more pleural retraction than AB-SSNs (all p < 0.017). The three models had AUCs ranging 0.748-0.920 and 0.790-0.912 in the training and external validation cohorts, respectively. A follow-up CT showed nodule progression in four benign SSNs. CONCLUSIONS: The three SSN types have different clinical and imaging characteristics, with some benign SSNs progressing to resemble malignancy. CRITICAL RELEVANCE STATEMENT: A good understanding of the imaging features and development trends of benign SSNs may help reduce unnecessary follow-up or interventions. This retrospective study explores the CT characteristics of benign SSNs with a solid component ≤ 5 mm by comparing AB-SSNs, NB-SSNs, and M-SSNs and delineates their development trends via follow-up CT. KEY POINTS: 1. Different subsolid nodule types exhibit distinct clinical and imaging features. 2. A miniscule number of benign subsolid nodules can progress to resemble malignancy. 3. Knowing the clinical and imaging features and development trends of benign subsolid nodules can improve management.

10.
J Affect Disord ; 351: 15-23, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38281596

RESUMO

BACKGROUND: Late-life depression (LLD) is associated with risk of dementia, yet intervention of LLD provides an opportunity to attenuate subsequent cognitive decline. Omega-3 polyunsaturated fatty acids (PUFAs) supplement is a potential intervention due to their beneficial effect in depressive symptoms and cognitive function. To explore the underlying neural mechanism, we used resting-state functional MRI (rs-fMRI) before and after omega-3 PUFAs supplement in older adults with LLD. METHODS: A 52-week double-blind randomized controlled trial was conducted. We used multi-scale sample entropy to analyze rs-fMRI data. Comprehensive cognitive tests and inflammatory markers were collected to correlate with brain entropy changes. RESULTS: A total of 20 patients completed the trial with 11 under omega-3 PUFAs and nine under placebo. While no significant global cognitive improvement was observed, a marginal enhancement in processing speed was noted in the omega-3 PUFAs group. Importantly, participants receiving omega-3 PUFAs exhibited decreased brain entropy in left posterior cingulate gyrus (PCG), multiple visual areas, the orbital part of the right middle frontal gyrus, and the left Rolandic operculum. The brain entropy changes of the PCG in the omega-3 PUFAs group correlated with improvement of language function and attenuation of interleukin-6 levels. LIMITATIONS: Sample size is small with only marginal clinical effect. CONCLUSION: These findings suggest that omega-3 PUFAs supplement may mitigate cognitive decline in LLD through anti-inflammatory mechanisms and modulation of brain entropy. Larger clinical trials are warranted to validate the potential therapeutic implications of omega-3 PUFAs for deterring cognitive decline in patients with late-life depression.


Assuntos
Depressão , Ácidos Graxos Ômega-3 , Humanos , Idoso , Entropia , Ácidos Graxos Ômega-3/uso terapêutico , Encéfalo/diagnóstico por imagem , Método Duplo-Cego , Cognição
11.
J Control Release ; 367: 892-904, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278369

RESUMO

The existence of a delicate redox balance in tumors usually leads to cancer treatment failure. Breaking redox homeostasis by amplifying oxidative stress and reducing glutathione (GSH) can accelerate cancer cell death. Herein, we construct a ferroptosis-reinforced nanocatalyst (denoted as HBGL) to amplify intracellular oxidative stress via dual H2O2 production-assisted chemodynamic therapy (CDT). Specifically, a long-circulating liposome is employed to deliver hemin (a natural iron-containing substrate for Fenton reaction and ferroptosis), ß-lapachone (a DNA topoisomerase inhibitor with H2O2 generation capacity for chemotherapy), and glucose oxidase (which can consume glucose for starvation therapy and generate H2O2). HBGL can achieve rapid, continuous, and massive H2O2 and •OH production and GSH depletion in cancer cells, resulting in increased intracellular oxidative stress. Additionally, hemin can reinforce the ferroptosis-inducing ability of HBGL, which is reflected in the downregulation of glutathione peroxidase-4 and the accumulation of lipid peroxide. Notably, HBGL can disrupt endo/lysosomes and impair mitochondrial function in cancer cells. HBGL exhibits effective tumor-killing ability without eliciting obvious side effects, indicating its clinical translation potential for synergistic starvation therapy, chemotherapy, ferroptosis therapy, and CDT. Overall, this nanocatalytic liposome may be a promising candidate for achieving potentiated cancer treatment.


Assuntos
Ferroptose , Neoplasias , Humanos , Peróxido de Hidrogênio , Hemina , Lipossomos , Estresse Oxidativo , Glutationa , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Curr Biol ; 34(1): R28-R30, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194925

RESUMO

A new study examines how Helicoverpa armigera females detect chemicals released by conspecific eggs in order to avoid laying more eggs on the same substrate. This work opens new avenues for basic research inquiries and offers a potential strategy for controlling insect pests.


Assuntos
Neurobiologia , Oviposição , Feminino , Animais , Helicoverpa armigera , Insetos
13.
PLoS Pathog ; 19(12): e1011828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091367

RESUMO

Buprofezin, a chitin synthesis inhibitor, is widely used to control several economically important insect crop pests. However, the overuse of buprofezin has led to the evolution of resistance and exposed off-target organisms present in agri-environments to this compound. As many as six different strains of bacteria isolated from these environments have been shown to degrade buprofezin. However, whether insects can acquire these buprofezin-degrading bacteria from soil and enhance their own resistance to buprofezin remains unknown. Here we show that field strains of the brown planthopper, Nilaparvata lugens, have acquired a symbiotic bacteria, occurring naturally in soil and water, that provides them with resistance to buprofezin. We isolated a symbiotic bacterium, Serratia marcescens (Bup_Serratia), from buprofezin-resistant N. lugens and showed it has the capacity to degrade buprofezin. Buprofezin-susceptible N. lugens inoculated with Bup_Serratia became resistant to buprofezin, while antibiotic-treated N. lugens became susceptible to this insecticide, confirming the important role of Bup_Serratia in resistance. Sequencing of the Bup_Serratia genome identified a suite of candidate genes involved in the degradation of buprofezin, that were upregulated upon exposure to buprofezin. Our findings demonstrate that S. marcescens, an opportunistic pathogen of humans, can metabolize the insecticide buprofezin and form a mutualistic relationship with N. lugens to enhance host resistance to buprofezin. These results provide new insight into the mechanisms underlying insecticide resistance and the interactions between bacteria, insects and insecticides in the environment. From an applied perspective they also have implications for the control of highly damaging crop pests.


Assuntos
Hemípteros , Inseticidas , Animais , Humanos , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Hemípteros/metabolismo , Bactérias , Solo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38083079

RESUMO

Electrocardiograms (ECGs) have the inherent property of being intrinsic and dynamic and are shown to be unique among individuals, making them promising as a biometric trait. Although many ECG biometric recognition approaches have demonstrated accurate recognition results in small enrollment sets, they can suffer from performance degradation when many subjects are enrolled. This study proposes an ECG biometric identification system based on locality-sensitive hashing (LSH) that can accommodate a large number of registrants while maintaining satisfactory identification accuracy. By incorporating the concept of LSH, the identity of an unknown subject can be recognized without performing vector comparisons for all registered subjects. Moreover, a kernel density estimator-based method is used to exclude unregistered subjects. The ECGs of 285 subjects from the PTB dataset were used to evaluate the proposed scheme's performance. Experimental results demonstrated an IR and EER of 99% and 4%, respectively, when Nen/Nid = 15/3.


Assuntos
Algoritmos , Identificação Biométrica , Humanos , Eletrocardiografia , Fenótipo , Reconhecimento Psicológico
15.
J Biol Eng ; 17(1): 74, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012588

RESUMO

Reconstruction of severe osteochondral defects in articular cartilage and subchondral trabecular bone remains a challenging problem. The well-integrated bilayer osteochondral graft design expects to be guided the chondrogenic and osteogenic differentiation for stem cells and provides a promising solution for osteochondral tissue repair in this study. The subchondral bone scaffold approach is based on the developed finer and denser 3D ß-tricalcium phosphate (ß-TCP) bioceramic scaffold process, which is made using a digital light processing (DLP) technology and the novel photocurable negative thermo-responsive (NTR) bioceramic slurry. Then, the concave-top disc sintered 3D-printed bioceramic incorporates the human adipose-derived stem cells (hADSCs) laden photo-cured hybrid biohydrogel (HG + 0.5AFnSi) comprised of hyaluronic acid methacryloyl (HAMA), gelatin methacryloyl (GelMA), and 0.5% (w/v) acrylate-functionalized nano-silica (AFnSi) crosslinker. The 3D ß-TCP bioceramic compartment is used to provide essential mechanical support for cartilage regeneration in the long term and slow biodegradation. However, the apparent density and compressive strength of the 3D ß-TCP bioceramics can be obtained for ~ 94.8% theoretical density and 11.38 ± 1.72 MPa, respectively. In addition, the in vivo results demonstrated that the hADSC + HG + 0.5AFnSi/3D ß-TCP of the bilayer osteochondral graft showed a much better osteochondral defect repair outcome in a rabbit model. The other word, the subchondral bone scaffold of 3D ß-TCP bioceramic could accelerate the bone formation and integration with the adjacent host cancellous tissue at 12 weeks after surgery. And then, a thicker cartilage layer with a smooth surface and uniformly aligned chondrocytes were observed by providing enough steady mechanical support of the 3D ß-TCP bioceramic scaffold.

16.
Pestic Biochem Physiol ; 196: 105584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945222

RESUMO

Insecticides have been widely used for the control of insect pests that have a significant impact on agriculture and human health. A better understanding of insecticide targets is needed for effective insecticide design and resistance management. Pymetrozine, afidopyropen and flonicamid are reported to target on proteins that located on insect chordotonal organs, resulting in the disruption of insect coordination and the inhibition of feeding. In this study, we systematically examined the susceptibility of six Drosophila melanogaster mutants (five transient receptor potential channels and one mechanoreceptor) to three commercially used insecticides, in order to identify the receptor subunits critical to the insect's response to insecticides. Our results showed that iav1, nan36aand wtrw1 mutants exhibited significantly reduced susceptibility to pymetrozine and afidopyropen, but not to flonicamid. The number of eggs produced by the three mutant females were significantly less than that of the w1118 strain. Meanwhile, the longevity of all male mutants and females of nan36a and wtrw1 mutants was significantly shorter than that of the w1118 strain as the control. However, we observed no gravitaxis defects in wtrw1 mutants and the anti-gravitaxis of wtrw1 mutants was abolished by pymetrozine. Behavioral assays using thermogenetic tools further confirmed the bioassay results and supported the idea that Nan as a TRPV subfamily member located in Drosophila chordotonal neurons, acting as a target of pymetrozine, which interferes with Drosophila and causes motor deficits with gravitaxis defects. Taken together, this study elucidates the interactions of pymetrozine and afidopyropen with TRPV channels, Nan and Iav, and TRPA channel, Wtrw. Our research provides another evidence that pymetrozine and afidopyropen might target on nan, iav and wtrw channels and provides insights into the development of sustainable pest management strategies.


Assuntos
Drosophila melanogaster , Inseticidas , Animais , Feminino , Humanos , Drosophila melanogaster/genética , Inseticidas/farmacologia , Genética Reversa , Drosophila/genética
17.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4742-4749, 2023 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-38013197

RESUMO

The development of new agricultural science is a new idea and a new measure that aims to deepen the reform of higher education in agriculture and forestry for the development of new agriculture, new countryside, new farmers and new ecosystem. It is therefore essential for the current undergraduate experimental teaching reform to timely introduce new technologies and new methods used in the development of agriculture and forestry industry into the experimental course teaching, and promote the integration of professional education with innovation and entrepreneurship education, according to the requirements of the new agricultural science. In view of this, the exploration and practice of molecular biology experiment course was carried out from the perspective of experimental projects, teaching modes and evaluation methods, according to the teaching requirements and characteristics of molecular biology experiment and teachers' scientific research achievements. The results showed that this reform greatly improved the students' comprehensive quality and innovation ability and may facilitate the innovation experiment teaching of other courses.


Assuntos
Ecossistema , Estudantes , Humanos , Currículo , Biologia Molecular
18.
Front Microbiol ; 14: 1285268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033578

RESUMO

Feline calicivirus (FCV) and Feline herpesvirus type I (FHV-I) are the main pathogens causing upper respiratory tract infections in cats, and some wild animals. These two viruses always coinfection and cause serious harm to pet industry and wild animals protection. Established a rapid and accurate differential diagnosis method is crucial for prevention and control of disease, however, the current main detection method for these two viruses, either is low sensitivity (immunochromatographic strip), or is time-consuming and cannot differential diagnosis (conventional single PCR). Nanoparticle-assisted polymerase chain reaction (Nano-PCR) is a recently developed technique for rapid detection method of virus and bacteria. In this study, we described a dual Nano-PCR assay through combining the nanotechnology and PCR technology, which for the clinical simultaneous detection of FCV and FHV-I and differential diagnosis of upper respiratory tract infections in cats or other animals. Under optimized conditions, the optimal annealing temperature for dual Nano-PCR was 51.5°C, and specificity test results showed it had no cross reactivity to related virus, such as feline panleukopenia virus (FPV), feline Infectious peritonitis virus (FIPV) and rabies virus (RABV). Furthermore, the detection limit of dual Nano-PCR for FCV and FHV-I both were 1 × 10-8 ng/µL, convert to number of copies of virus DNA was 6.22 × 103copies/µL (FCV) and 2.81 × 103copies/µL (FHV-I), respectively. The dual Nano-PCR detected result of 52 cat clinical samples, including ocular, nasal and faecal swabs, and (3 FCV-positive samples), was consistent with ordinary PCR and the clinical detection results. The dual Nano-PCR method established in this study with strong specificity and high sensitivity can be used for virus nucleic acid (FCV and FHV-I) detection of clinical samples of feline upper respiratory tract infections feline calicivirus and feline herpesvirus while providing support for the early diagnosis of cats that infected by FCV and FHV-I.

19.
Gynecol Minim Invasive Ther ; 12(4): 191-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034109

RESUMO

There is a trend toward more minimally invasive treatment for symptomatic uterine fibroids. They are image-guided ablation surgery with focused ultrasound, microwave, and radiofrequency ablations that are becoming tested and used in some medical centers or hospitals. Nevertheless, these image-guided ablation surgeries involve thermal ablation to the fibroids, which might lead to thermal injury to the surrounding tissues, for example, nerve injury, vessel injury, and skin burn due to heat diffusion. A new technology - irreversible electroporation (IRE) - is a new paradigm for treating solid tumors. This nonthermal ablation process does not induce high temperatures when treating cancers or solid tumors. The IRE treatment may soon be used for treating fibroids or other solid tumors. In a few clinical trials, IRE is currently used in experimental studies for treating gynecological cancers. This paper will present the minimally invasive thermal ablation treatments for fibroids, introduce this new nonthermal IRE ablation in treating gynecological cancer, and propose its future uses in uterine fibroids.

20.
Insect Sci ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37846895

RESUMO

The rice stem borer (RSB), Chilo suppressalis, a notorious rice pest in China, has evolved a high resistance level to commonly used insecticides. Tetraniliprole, a new anthranilic diamide insecticide, effectively controls multiple pests, including RSB. However, the potential resistance risk of RSB to tetraniliprole is still unknown. In this study, the tetraniliprole-selection (Tet-R) strain was obtained through 10 continuous generations of selection with tetraniliprole 30% lethal concentration (LC30 ). The realized heritability (h2 ) of the Tet-R strain was 0.387, indicating that resistance of RSB to tetraniliprole developed rapidly under the continuous selection of tetraniliprole. The Tet-R strain had a high fitness cost (relative fitness = 0.53). We established the susceptibility baseline of RSB to tetraniliprole (lethal concentration at LC50  = 0.727 mg/L) and investigated the resistance level of 6 field populations to tetraniliprole. All tested strains that had resistance to chlorantraniliprole exhibited moderate- to high-level resistance to tetraniliprole (resistance ratio = 27.7-806.8). Detection of ryanodine receptor (RyR) mutations showed that the Y4667C, Y4667D, I4758M, and Y4891F mutations were present in tested RSB field populations. RyR mutations were responsible for the cross-resistance between tetraniliprole and chlorantraniliprole. Further, the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated genome-modified flies were used to study the contribution of RyR mutations to tetraniliprole resistance. The order of contribution of a single RyR mutation to tetraniliprole resistance was Y4667D > G4915E > Y4667C ≈ I4758M > Y4891F. In addition, the I4758M and Y4667C double mutations conferred higher tetraniliprole resistance than single Y4667C mutations. These results can guide resistance management practices for diamides in RSB and other arthropods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...