Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38573228

RESUMO

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Assuntos
Dieta Hiperlipídica , Mitocôndrias , Resultado da Gravidez , Resveratrol , Útero , Animais , Resveratrol/farmacologia , Feminino , Gravidez , Camundongos , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Útero/metabolismo , Útero/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo
2.
Gut Microbes ; 16(1): 2340487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626129

RESUMO

Obesity is becoming a major global health problem in children that can cause diseases such as type 2 diabetes and metabolic disorders, which are closely related to the gut microbiota. However, the underlying mechanism remains unclear. In this study, a significant positive correlation was observed between Prevotella copri (P. copri) and obesity in children (p = 0.003). Next, the effect of P. copri on obesity was explored by using fecal microbiota transplantation (FMT) experiment. Transplantation of P. copri. increased serum levels of fasting blood glucose (p < 0.01), insulin (p < 0.01) and interleukin-1ß (IL-1ß) (p < 0.05) in high-fat diet (HFD)-induced obese mice, but not in normal mice. Characterization of the gut microbiota indicated that P. copri reduced the relative abundance of the Akkermansia genus in mice (p < 0.01). Further analysis on bile acids (BAs) revealed that P. copri increased the primary BAs and ursodeoxycholic acid (UDCA) in HFD-induced mice (p < 0.05). This study demonstrated for the first time that P. copri has a significant positive correlation with obesity in children, and can increase fasting blood glucose and insulin levels in HFD-fed obese mice, which are related to the abundance of Akkermansia genus and bile acids.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade Infantil , Prevotella , Humanos , Criança , Animais , Camundongos , Insulina , Ácidos e Sais Biliares/farmacologia , Glicemia , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
3.
J Nutr Biochem ; 124: 109491, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865382

RESUMO

Weaning is one of the major factors that cause stress and intestinal infection in infants and in young animals due to an immature intestine and not fully developed immune functions. Pectin (PEC), a prebiotic polysaccharide, has attracted considerable attention in intestinal epithelial signaling and function via modulation of the microbial community. A total of 16 weaned piglets (21-d-old) were randomly assigned into two groups: control group and PEC group. Supplementation of 5% pectin improved intestinal mucosal barrier function by modulating the composition of the bile acid pool in piglets. Specifically, piglets in PEC group had less serum D-lactate content and alkaline phosphatase activity. In the ileum, dietary pectin increased the number of crypt PAS/AB-positive goblet cells and the mRNA expressions of MUC2, ZO-1, and Occludin. Piglets in PEC group displayed a decreased abundance of Enterococcus (2.71 vs. 65.92%), but the abundances of Lactobacillus (30.80 vs. 7.93%), Streptococcus (21.41 vs. 14.81%), and Clostridium_sensu_stricto_1 (28.34 vs. 0.01%) were increased. Elevated concentrations of bile acids especially hyocholic acid species (HCAs) including HCA, HDCA, and THDCA were also observed. Besides, correlation analysis revealed that dietary pectin supplementation may have beneficial effects through stimulation of the crosstalk between gut microbes and bile acid synthesis within the enterohepatic circulation. Thus, dietary pectin supplementation exhibited a further positive effect on the healthy growth and development of weaned piglets. These findings suggest pectin supplementation as the prebiotic is beneficial for gut health and improvement of weaned stress via regulating microbiota and bile acid metabolism.


Assuntos
Suplementos Nutricionais , Função da Barreira Intestinal , Humanos , Animais , Suínos , Suplementos Nutricionais/análise , Pectinas/farmacologia , Dieta , Ácidos e Sais Biliares , Desmame
4.
Anim Nutr ; 15: 341-349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053801

RESUMO

Rosemary extracts have been widely used as feed additives in recent years. This study aimed to investigate the effects of rosmarinic acid (RA) and ursolic acid (UA), the main active components of rosemary, on growth performance, meat quality and lipid metabolism in finishing pigs. A total of 72 finishing pigs (Landrace; initial age of 150 d) were randomly divided into 3 treatments with 8 replicates of 3 pigs each, and fed a basal diet or diet containing 500 mg/kg of RA or UA. The results showed that dietary supplementation of RA or UA had no significant effect on the growth performance and carcass traits of finishing pigs (P > 0.05). However, both RA and UA significantly increased the triglyceride (TG) level in soleus muscle (P < 0.001). Supplementation of RA increased the expression of genes related to lipogenesis and transport including fatty acid synthase (FAS) (P < 0.001), sterol regulatory element binding protein-1c (SREBP1c) (P < 0.001) and peroxisome proliferator-activated receptor γ (PPARγ) (P < 0.05), while UA increased the expression of fatty acid transport protein 1 (FATP1), a gene related to lipid uptake (P < 0.05). However, RA reduced the expression of adipogenesis-related gene acetyl-coenzyme A carboxylase α (ACCα) (P < 0.01). Characterization of cecal microbiota indicated that RA increased the microbial richness (chao 1, P < 0.001) and diversity (observed species, P < 0.01). Further analysis of the genera revealed that RA increased the relative abundance of Bacteroides and g-UCG-005 (P < 0.05), and UA enriched Prevotella (P < 0.001). Correlation analysis showed that g-UCG-005 was positively correlated with the expression of FAS, carnitine palmitoyl transferase 1B (CPT1B), SREBP1c and PPARγ (P < 0.01). In conclusion, dietary supplementation of RA or UA may increase fat deposition in muscle of finishing pigs by regulating lipid metabolism and gut microbiota.

5.
Gut Microbes ; 15(1): 2238959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37505920

RESUMO

Gut microbiota-diet interaction has been identified as a key factor of metabolic associated fatty liver disease (MAFLD). Recent studies suggested that dietary polyphenols may protect against MAFLD by regulating gut microbiota; however, the underlying mechanisms remain elusive. We first investigated the effects of cyanidin 3-glucoside and its phenolic metabolites on high-fat diet induced MAFLD in C57BL/6J mice, and protocatechuic acid (PCA) showed a significant positive effect. Next, regulation of PCA on lipid metabolism and gut microbiota were explored by MAFLD mouse model and fecal microbiota transplantation (FMT) experiment. Dietary PCA reduced intraperitoneal and hepatic fat deposition with lower levels of transaminases (AST & ALT) and inflammatory cytokines (IL-1ß, IL-2, IL-6, TNF-α & MCP-1), but higher HDL-c/LDL-c ratio. Characterization of gut microbiota indicated that PCA decreased the Firmicutes/Bacteroidetes ratio mainly by reducing the relative abundance of genus Enterococcus, which was positively correlated with the levels of LDL-c, AST, ALT and most of the up-regulated hepatic lipids by lipidomics analysis. FMT experiments showed that Enterococcus faecalis caused hepatic inflammation, fat deposition and insulin resistance with decreased expression of carnitine palmitoyltransferase-1 alpha (CPT1α), which can be reversed by PCA through inhibiting Enterococcus faecalis. Transcriptomics analysis suggested that Enterococcus faecalis caused a significant decrease in the expression of fibroblast growth factor 1 (Fgf1), and PCA recovered the expression of Fgf1 with insulin-like growth factor binding protein 2 (Igfbp2), insulin receptor substrate 1 (Irs1) and insulin receptor substrate 2 (Irs2). These results demonstrated that high proportion of gut Enterococcus faecalis accelerates MAFLD with decreased expression of CPT1α and Fgf1, which can be prevented by dietary supplementation of PCA.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , LDL-Colesterol , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos
6.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36829919

RESUMO

The energy and metabolic state of sows will alter considerably over different phases of gestation. Maternal metabolism increases dramatically, particularly in late pregnancy. This is accompanied by the development of an increase in oxidative stress, which has a considerable negative effect on the maternal and the placenta. As the only link between the maternal and the fetus, the placenta is critical for the maternal to deliver nutrients to the fetus and for the fetus' survival and development. This review aimed to clarify the changes in energy and metabolism in sows during different pregnancy periods, as well as the impact of maternal oxidative stress on the placenta, which affects the fetus' survival and development.

7.
J Adv Res ; 53: 187-198, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36539077

RESUMO

BACKGROUND: The accumulation of ectopic fats is related to metabolic syndromes with insulin resistance, which is considered as the first hit in obesity-related diseases. However, systematic understanding of the occurrence of ectopic fats is limited, since organisms are capable of orchestrating complicated intracellular signaling pathways to ensure that the correct nutritional components reach the tissues where they are needed. Interestingly, tissue-specific mechanisms lead to different consequences of fat metabolism with different insulin sensitivities. AIM OF REVIEW: To summarize the mechanisms of fat deposition in different tissues including adipose tissue, subcutis, liver, muscle and intestines, in an attempt to elucidate interactive mechanisms involving insulin actions and establish a potential reference for the rational uptake of fat. KEY SCIENTIFIC CONCEPTS OF REVIEW: Tissue-specific fat metabolism serves as a trigger for developing abnormal fat metabolism or as a compensatory agent for regulating normal fat metabolism. Outcomes of de novo lipogenesis and adipogenesis differ in the subcutaneous adipose tissue (SAT), liver and muscle, with the participation of insulin actions. Overload of lipid metabolic capability results in SAT fat expansion, and ectopic fat accumulation implicates impaired lipo-/adipogenesis in SAT. Regulating insulin actions may be a key measure on fat deposition and metabolism in individuals.


Assuntos
Resistência à Insulina , Insulinas , Síndrome Metabólica , Humanos , Metabolismo dos Lipídeos , Tecido Adiposo/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Resistência à Insulina/fisiologia , Gorduras/metabolismo , Insulinas/metabolismo
8.
Animals (Basel) ; 12(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009686

RESUMO

The present study was conducted to evaluate the effects of unconventional feedstuff such as wheat, broken rice, distillers dried grains with soluble (DDGS), and wheat bran, replacing 15% of the corn in the basal diet and the supplementation of bacterial phytase on nutrition digestibility. A total of 500 yellow-feathered broilers with similar body weights of 1.65 ± 0.15 kg were divided into 10 dietary treatments with 5 replicates per treatment (5 male and 5 females per cage). The AME and AIDE were significantly higher when supplied with phytase (p < 0.01) in the DDGS group. The ileal and total tract digestibility of calcium and phosphorus were significantly increased in the phytase-supplied group (p < 0.001). Additionally, the ileal digestibility of CP was increased when phytase was supplemented (p < 0.001). The results infer that the wheat, broken rice, DDGS, and wheat bran had no negative effect when replacing 15% corn. Supplementing 0.02% phytase in their diets can effectively optimize nutrient digestibility in yellow broilers.

9.
Front Nutr ; 9: 918098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719145

RESUMO

Objective: This study aimed to evaluate the effect of an antibiotic cocktail on gut microbiota and provide a reference for establishing an available mouse model for fecal microbiota transplantation (FMT) of specific microbes. Design: C57BL/6J mice (n = 24) had free access to an antibiotic cocktail containing vancomycin (0.5 g/L), ampicillin (1 g/L), neomycin (1 g/L), and metronidazole (1 g/L) in drinking water for 3 weeks. Fecal microbiota was characterized by 16S rDNA gene sequencing at the beginning, 1st week, and 3rd week, respectively. The mice were then treated with fecal microbiota from normal mice for 1 week to verify the efficiency of FMT. Results: The diversity of microbiota including chao1, observed species, phylogenetic diversity (PD) whole tree, and Shannon index were decreased significantly (P < 0.05) after being treated with the antibiotic cocktail for 1 or 3 weeks. The relative abundance of Bacteroidetes, Actinobacteria, and Verrucomicrobia was decreased by 99.94, 92.09, and 100%, respectively, while Firmicutes dominated the microbiota at the phylum level after 3 weeks of treatment. Meanwhile, Lactococcus, a genus belonging to the phylum of Firmicutes dominated the microbiota at the genus level with a relative abundance of 80.63%. Further FMT experiment indicated that the fecal microbiota from the receptor mice had a similar composition to the donor mice after 1 week. Conclusion: The antibiotic cocktail containing vancomycin, ampicillin, neomycin, and metronidazole eliminates microbes belonging to Bacteroidetes, Actinobacteria, and Verrucomicrobia, which can be recovered by FMT in mice.

10.
Anim Nutr ; 8(1): 144-152, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34977384

RESUMO

Ferulic acid (FA) and vanillic acid (VA) are considered as major phenolic metabolites of cyanidin 3-glucoside, a polyphenol that widely exists in plants that possess a protective effect against oxidative stress and inflammation in our previous study. This study aimed to investigate the effect of FA and VA on inflammation, gut barrier function, and growth performance in a weaned piglet model challenged with lipopolysaccharide (LPS). Thirty-six piglets (PIC 337 × C48, 28 d of age) were randomly allocated into 3 treatments with 6 replicate pens (2 piglets per pen). They were fed with a basal diet or a diet containing 4,000 mg/kg of FA or VA. Dietary supplementation of VA significantly increased average daily gain (ADG) (P < 0.05). Both FA and VA decreased serum levels of thiobarbituric acid reactive substances (TBARS), interlukin (IL)-1ß, IL-2, IL-6, and tumor necrosis factor (TNF)-α (P < 0.05), and enhanced the expression of tight junction protein oclaudin (P < 0.05). Analysis of gut microbiota indicated that both FA and VA increased the Firmicutes/Bacteroidetes ratio alongside reducing the relative abundance of the Prevotellaceae family including Prevotella 9 and Prevotella 2 genera, but enriched the Lachoiraceaea family including the Lachnospiraceae FCS020 group (P < 0.05). Moreover, VA reduced the relative abundance of Prevotella 7 and Prevotella 1 but enriched Lachnospira, Eubacterium eligens group, and Eubacterium xylanophilum group (P < 0.05), while FA showed a limited effect on these genera. The results demonstrated that both VA and FA could alleviate inflammation and oxidative stress, but only VA has a significant positive effect on the growth performance of LPS-challenged piglets potentially through modulating gut microbiota.

11.
Front Immunol ; 12: 744425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899699

RESUMO

As the precursor of vitamin A, ß-carotene has a positive effect on reproductive performance. Our previous study has shown that ß-carotene can increase antioxidant enzyme activity potentially through regulating gut microbiota in pregnant sows. This study aimed to clarify the effect of ß-carotene on reproductive performance and postpartum uterine recovery from the aspect of inflammation and gut microbiota by using a mouse model. Twenty-seven 6 weeks old female Kunming mice were randomly assigned into 3 groups (n=9), and fed with a diet containing 0, 30 or 90 mg/kg ß-carotene, respectively. The results showed that dietary supplementation of ß-carotene reduced postpartum uterine hyperemia and uterine mass index (P<0.05), improved intestinal villus height and villus height to crypt depth ratio, decreased serum TNF-α and IL-4 concentration (P<0.05), while no differences were observed in litter size and litter weight among three treatments. Characterization of gut microbiota revealed that ß-carotene up-regulated the relative abundance of genera Akkermansia, Candidatus Stoquefichus and Faecalibaculum, but down-regulated the relative abundance of Alloprevotella and Helicobacter. Correlation analysis revealed that Akkermansia was negatively correlated with the IL-4 concentration, while Candidatus Stoquefichus and Faecalibaculum had a negative linear correlation with both TNF-α and IL-4 concentration. On the other hand, Alloprevotella was positively correlated with the TNF-α, and Helicobacter had a positive correlation with both TNF-α and IL-4 concentration. These data demonstrated that dietary supplementation of ß-carotene contributes to postpartum uterine recovery by decreasing postpartum uterine hemorrhage and inhibiting the production of inflammatory cytokines potentially through modulating gut microbiota.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Período Pós-Parto/efeitos dos fármacos , Útero/efeitos dos fármacos , beta Caroteno/farmacologia , Animais , Animais não Endogâmicos , Dieta , Feminino , Inflamação/patologia , Camundongos , Gravidez , Distribuição Aleatória , Útero/patologia
12.
Front Nutr ; 7: 612875, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381515

RESUMO

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and ß-carotene has a potentially positive effect on reproduction, but the impact of ß-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of ß-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of ß-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg ß-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, ß-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P < 0.05). Characterization of fecal microbiota revealed that 90 mg/kg ß-carotene increased the diversity of the gut flora (P < 0.05). In particular, ß-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of ß-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.

13.
Nutrients ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114130

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome closely linked to dyslipidemia and gut microbiome dysbiosis. Bilberry anthocyanins (BA) have been reported to have preventive effects against metabolic syndrome. This study aimed to investigate the protective effects and mechanisms of BA in a Western diet (WD)-induced mouse model. The results revealed that supplementation with BA attenuated the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein cholesterol (LDL-c), fat content in liver, 2-thiobarbituric acid reactive substances (TBARS) and α-smooth muscle actin (α-SMA) caused by WD. Furthermore, gut microbiota characterized by 16S rRNA sequencing revealed that BA reduced remarkably the ratio of Firmicutes/Bacteroidetes (F/B) and modified gut microbiome. In particular, BA increased the relative abundance of g_Akkermansia and g_Parabacteroides. Taken together, our data demonstrated that BA might ameliorate WD-induced NAFLD by attenuating dyslipidemia and gut microbiome dysbiosis.


Assuntos
Antocianinas/farmacologia , Disbiose/terapia , Dislipidemias/terapia , Microbioma Gastrointestinal/genética , Hepatopatia Gordurosa não Alcoólica/terapia , Vaccinium myrtillus/química , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , LDL-Colesterol/sangue , Dieta Ocidental/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Disbiose/sangue , Disbiose/complicações , Dislipidemias/sangue , Dislipidemias/microbiologia , Fígado/metabolismo , Síndrome Metabólica/microbiologia , Síndrome Metabólica/prevenção & controle , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/microbiologia , RNA Ribossômico 16S/metabolismo
14.
J Anim Sci Biotechnol ; 11: 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944233

RESUMO

BACKGROUND: Weaning is one of the major factors that cause stress and intestinal disease in piglets. Protocatechuic acid (PCA) is an active plant phenolic acid which exists in Chinese herb, Duzhong (Eucommia ulmoides Oliver), and is also considered as the main bioactive metabolite of polyphenol against oxidative stress and inflammation. This study aimed to investigate the effect of PCA on growth performance, intestinal barrier function, and gut microbiota in a weaned piglet model challenged with lipopolysaccharide (LPS). METHODS: Thirty-six piglets (Pig Improvement Company line 337 × C48, 28 d of age, 8.87 kg ± 0.11 kg BW) were randomly allocated into 3 treatments and fed with a basal diet (CTL), a diet added 50 mg/kg of aureomycin (AUR), or a diet supplemented with 4000 mg/kg of PCA, respectively. The piglets were challenged with LPS (10 µg/kg BW) on d 14 and d 21 by intraperitoneal injection during the 21-d experiment. Animals (n = 6 from each group) were sacrificed after being anesthetized by sodium pentobarbital at 2 h after the last injection of LPS. The serum was collected for antioxidant indices and inflammatory cytokines analysis, the ileum was harvested for detecting mRNA and protein levels of tight junction proteins by PCR and immunohistochemical staining, and the cecum chyme was collected for intestinal flora analysis using 16S rRNA gene sequencing. RESULTS: Dietary supplementation of PCA or AUR significantly increased the expression of tight junction proteins including ZO-1 and claudin-1 in intestinal mucosa, and decreased the serum levels of thiobarbituric acid reactive substances (TBARS) and IL-6, as compared with CTL group. In addition, PCA also decreased the serum levels of IL-2 and TNF-α (P < 0.05). Analysis of gut microbiota indicated that PCA increased the Firmicutes/Bacteroidetes ratio (P < 0.05). Spearman's correlation analysis at the genus level revealed that PCA reduced the relative abundance of Prevotella 9, Prevotella 2, Holdemanella, and Ruminococcus torques group (P < 0.05), and increased the relative abundance of Roseburia and Desulfovibrio (P < 0.05), whereas AUR had no significant effect on these bacteria. CONCLUSIONS: These results demonstrated that both PCA and AUR had protective effect on oxidative stress, inflammation and intestinal barrier function in piglets challenged with LPS, and PCA potentially exerted the protective function by modulating intestinal flora in a way different from AUR.

15.
Antioxidants (Basel) ; 8(10)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614770

RESUMO

Cyanidin-3-glucoside (C3G) is a well-known natural anthocyanin and possesses antioxidant and anti-inflammatory properties. The catabolism of C3G in the gastrointestinal tract could produce bioactive phenolic metabolites, such as protocatechuic acid, phloroglucinaldehyde, vanillic acid, and ferulic acid, which enhance C3G bioavailability and contribute to both mucosal barrier and microbiota. To get an overview of the function and mechanisms of C3G and its phenolic metabolites, we review the accumulated data of the absorption and catabolism of C3G in the gastrointestine, and attempt to give crosstalk between the phenolic metabolites, gut microbiota, and mucosal innate immune signaling pathways.

16.
Biomed Mater ; 14(4): 045016, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31141792

RESUMO

To simultaneously impart excellent biological activity and antibacterial function to titanium-based metal materials, rubidium-doped titanium surfaces were prepared via alkali heat treatment, subsequent hydrothermal treatment and final heat treatment. The alkali heat treatment was employed to fabricate an amorphous sodium titanate hydrogel layer on titanium substrates. Thereafter, rubidium was introduced through the hydrothermal process. After final heat treatment, crystallized rubidium titanate and sodium titanate were obtained on titanium surfaces. The viability of MC3T3-E1 cells was inhibited on rubidium-doped titanium surfaces for short-term (day 1). With prolonged duration, the viability and alkali phosphatase (ALP) activity were comparable for various surfaces with different amounts of rubidium (day 5). With further increased culture duration, the collagen synthesis (day 10) and in vitro mineralization of osteoblasts were found to be significantly enhanced on rubidium-doped titanium surfaces. The Rb-doped Ti surfaces showed antibacterial capacity against Staphylococcus aureus at both 12 and 24 h. The results indicate that doping rubidium into titanium surfaces could simultaneously endow materials with favorable osteogenic and antibacterial capacity.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Rubídio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Titânio/farmacologia , Células 3T3 , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Temperatura Alta , Teste de Materiais , Camundongos , Testes de Sensibilidade Microbiana , Osseointegração , Osteoblastos/citologia , Osteogênese , Óxidos/química , Propriedades de Superfície , Titânio/química
17.
Antioxidants (Basel) ; 8(3)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889815

RESUMO

Heat stress is a non-specific physiological response of the body when exposed to high ambient temperatures, which can break the balance of body redox and result in oxidative stress that affects growth performance as well as the health of poultry species. Polyphenols have attracted much attention in recent years due to their antioxidant ability and thus, can be an effective attenuator of heat stress. In this paper, the potential mechanisms underlying the inhibitory effect of polyphenols on heat stress in poultry has been reviewed to provide a reference and ideas for future studies related to polyphenols and poultry production.

18.
Biosci Biotechnol Biochem ; 83(5): 960-969, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30730256

RESUMO

6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in Wasabi. Although 6-MSITC is reported to have cancer chemopreventive activities in rat model, the molecular mechanism is unclear. In this study, we investigated the anticancer mechanisms using two types of human colorectal cancer cells (HCT116 p53+/+ and p53-/-). 6-MSITC caused cell cycle arrest in G2/M phase and induced apoptosis in both types of cells in the same fashion. Signaling data revealed that the activation of ERK1/2, rather than p53, is recruited for 6-MSITC-induced apoptosis. 6-MSITC stimulated ERK1/2 phosphorylation, and then activated ERK1/2 signaling including ELK1 phosphorylation, and upregulation of C/EBP homologous protein (CHOP) and death receptor 5 (DR5). The MEK1/2 inhibitor U0126 blocked all of these molecular events induced by 6-MSITC, and enhanced the cell viability in both types of cells in the same manner. These results indicated that ERK1/2-mediated ELK1/CHOP/DR5 pathway is involved in 6-MSITC-induced apoptosis in colorectal cancer cells. Abbreviations: CHOP: C/EBP homologous protein; DR5: death receptor 5; ELK1: ETS transcription factor; ERK1/2: extracellular signal-regulated kinase 1/2; JNK: Jun-N-terminal kinase; MAPK: mitogen-activated protein kinase; MEK1/2: MAP/ERK kinase 1/2; 6-MSITC: 6-(methylsulfinyl)hexyl isothiocyanate; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PARP: poly(ADP-ribose) polymerase.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/patologia , Isotiocianatos/farmacologia , Sistema de Sinalização das MAP Quinases , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Butadienos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Nitrilas/farmacologia , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
19.
Molecules ; 24(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781396

RESUMO

Fisetin, a dietary flavonoid, is reported to have cellular antioxidant activity with an unclear mechanism. In this study, we investigated the effect of fisetin on the nuclear factor, erythroid 2-like 2 (Nrf2) signaling pathway in HepG2 cells to explore the cellular antioxidant mechanism. Fisetin upregulated the mRNA expression of heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase-1 (NQO1), and induced the protein of HO-1 but had no significant effect on the protein of GCLC, GCLM and NQO1. Moreover, nuclear accumulation of Nrf2 was clearly observed by immunofluorescence analysis and western blotting after fisetin treatment, and an enhanced luciferase activity of antioxidant response element (ARE)-regulated transactivation was obtained by dual-luciferase reporter gene assays. In addition, fisetin upregulated the protein level of Nrf2 and downregulated the protein level of Kelch-like ECH-associated protein 1 (Keap1). However, fisetin had no significant effect on Nrf2 mRNA expression. When protein synthesis was inhibited with cycloheximide (CHX), fisetin prolonged the half-life of Nrf2 from 15 min to 45 min. When blocking Nrf2 degradation with proteasome inhibitor MG132, ubiquitinated proteins were enhanced, and fisetin reduced ubiquitination of Nrf2. Taken together, fisetin translocated Nrf2 into the nucleus and upregulated the expression of downstream HO-1 gene by inhibiting the degradation of Nrf2 at the post-transcriptional level. These data provide the molecular mechanism to understand the cellular antioxidant activity of fisetin.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Elementos de Resposta Antioxidante/efeitos dos fármacos , Flavonóis , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/metabolismo , Células Hep G2 , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
20.
Molecules ; 23(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563142

RESUMO

Polyphenols from the Lonicera caerulea L. berry have shown protective effects on experimental non-alcoholic fatty liver disease (NAFLD) in our previous studies. As endotoxins from gut bacteria are considered to be the major trigger of inflammation in NAFLD, this study aims to clarify the regulatory effects of L. caerulea L. berry polyphenols (LCBP) on gut microbiota in a high fat diet (HFD)-induced mouse model. C57BL/6N mice were fed with a normal diet, HFD, or HFD containing 0.5⁻1% of LCBP for 45 days. The results revealed that supplementation with LCBP decreased significantly the levels of IL-2, IL-6, MCP-1, and TNF-α in serum, as well as endotoxin levels in both serum and liver in HFD-fed mice. Fecal microbiota characterization by high throughput 16S rRNA gene sequencing revealed that a HFD increased the Firmicutes/Bacteroidetes ratio, and LCBP reduced this ratio by increasing the relative abundance of Bacteroides, Parabacteroides, and another two undefined bacterial genera belonging to the order of Bacteroidales and family of Rikenellaceae, and also by decreasing the relative abundance of six bacterial genera belonging to the phylum Firmicutes, including Staphylococcus, Lactobacillus, Ruminococcus, and Oscillospira. These data demonstrated that LCBP potentially attenuated inflammation in NAFLD through modulation of gut microbiota, especially the ratio of Firmicutes to Bacteroidetes.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal/efeitos dos fármacos , Lonicera/química , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Endotoxinas/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/química , Polifenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...