Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404271, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700507

RESUMO

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4)∙4H2O (H2quinha = quinaldichydroxamic acid, HClsal = 5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4)·3H2O (HClsaldt = 4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S = 0 to high-spin S = 1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

2.
Dalton Trans ; 53(17): 7470-7476, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38595157

RESUMO

A series of two-dimensional (2D) spin-crossover coordination polymers (SCO-CPs) [FeII(TPE)(NCX)2]·solv (1: X = BH3, solv = H2O·2CH3OH·DMF; 2: X = Se, solv = H2O·2CH3OH·0.5DMF; 3: X = S, solv = H2O·2CH3OH·0.5DMF) were synthesized by employing 1,1,2,2-tetra(pyridin-4-yl)ethene (TPE) and pseudohalide (NCX-) coligands. Magnetic measurements indicated that complexes 1-3 exhibited SCO behaviors with diminishing thermal hysteresis (7/4/0 K) upon decreasing the ligand-field strength. The critical temperatures (Tc) during spin transition were found to be inversely proportional to the coordination ability parameters (a™) with a linear correlation. The guest effect was also investigated in the solvent-exchanged phases 1-SE/2-SE/3-SE wherein the DMF molecules were replaced by methanol molecules. Compared with 1-3, 1-SE/2-SE/3-SE displayed more abrupt and complete single-step SCO behaviors but narrower thermal hysteretic loops. The results reported here demonstrate that the Tc values of these two families were dominated by the ligand-field strength of the NCX- anions (NCBH3 > NCSe > NCS), whereas the guest effect only modulated the kinetic factor of the SCO nature in this system.

3.
Chem Commun (Camb) ; 60(32): 4318-4321, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534062

RESUMO

In this study, we successfully synthesize cationic/neutral/anionic inverse-Hofmann-type spin crossover (SCO) frameworks with 1,1,2,2-tetrakis(4-(pyridine-4-yl)phenyl)-ethene ligand by means of cyanometallic charge engineering strategy. The cationic and neutral frameworks exhibit single-step thermally induced spin transition behaviors, while the SCO capability of anionic framework can be aroused by partial desolvation. This strategy provides a new idea to construct ionic SCO frameworks and extends the toolkit for SCO materials.

4.
Angew Chem Int Ed Engl ; 62(46): e202312685, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37779343

RESUMO

Spin crossover (SCO) materials with new architectures will expand and enrich the research in the SCO field. Here, we report two metal-organic frameworks (MOFs) containing tetradentate organic ligands and hexatopic linkers [Ag8 X8 (CN)6 ]6- (X=Br and I), which represents the first SCO MOF with clusters as building blocks. The silver halide cluster can be further removed after reacting with lithium tetracyanoquinodimethan (LiTCNQ). Such post-synthetic modification (PSM) is realized via single-crystal to single-crystal (SCSC) transformation from urk to nbo topology. Accordingly, the spin state and fluorescence properties are greatly modified by cluster deconstruction. Therefore, these achievements will provide new ideas for the design of new SCO systems and the development of PSM methods.

5.
Natl Sci Rev ; 10(4): nwad036, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37200676

RESUMO

High-nuclear lanthanide clusters have shown great potential for the administration of high-dose mononuclear gadolinium chelates in magnetic resonance imaging (MRI). The development of high-nuclear lanthanide clusters with excellent solubility and high stability in water or solution has been challenging and is very important for expanding the performance of MRI. We used N-methylbenzimidazole-2-methanol (HL) and LnCl3·6H2O to synthesize two spherical lanthanide clusters, Ln32 (Ln = Ho, Ho32; and Ln = Gd, Gd32), which are highly stable in solution. The 24 ligands L- are all distributed on the periphery of Ln32 and tightly wrap the cluster core, ensuring that the cluster is stable. Notably, Ho32 can remain highly stable when bombarded with different ion source energies in HRESI-MS or immersed in an aqueous solution of different pH values for 24 h. The possible formation mechanism of Ho32 was proposed to be Ho(III), (L)- and H2O → Ho3(L)3/Ho3(L)4 → Ho4(L)4/Ho4(L)5 → Ho6(L)6/Ho6(L)7 → Ho16(L)19 → Ho28(L)15 → Ho32(L)24/Ho32(L)21/Ho32(L)23. To the best of our knowledge, this is the first study of the assembly mechanism of spherical high-nuclear lanthanide clusters. Spherical cluster Gd32, a form of highly aggregated Gd(III), exhibits a high longitudinal relaxation rate (1 T, r1 = 265.87 mM-1·s-1). More notably, compared with the clinically used commercial material Gd-DTPA, Gd32 has a clearer and higher-contrast T1-weighted MRI effect in mice bearing 4T1 tumors. This is the first time that high-nuclear lanthanide clusters with high water stability have been utilized for MRI. High-nuclear Gd clusters containing highly aggregated Gd(III) at the molecular level have higher imaging contrast than traditional Gd chelates; thus, using large doses of traditional gadolinium contrast agents can be avoided.

6.
Chem Commun (Camb) ; 59(41): 6159-6170, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37129902

RESUMO

In the field of molecular magnetism, the lanthanide-radical (Ln-Rad) method has become one of the most appealing tactics for introducing strong magnetic interactions and has spurred on the booming development of heterospin single-molecule magnets (SMMs). The article is a timely retrospect on the research progress of Ln-Rad heterospin systems and special attention is invested on low dimensional Ln-Rad compounds with SMM behavior, primarily concerning with nitrogen-based radicals, semiquinone and nitroxide radicals. Rational design, molecular structures, magnetic behaviors and magneto-structural correlations are highlighted. Meanwhile, particular attention is focused on the influence of exchange couplings on the dynamic magnetic properties, with the purpose of helping to guide the design of prospective radical-based Ln-SMMs.

7.
Inorg Chem ; 62(3): 1075-1085, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36625763

RESUMO

Herein, hexaazamacrocyclic ligand LN6 was employed to construct a series of photochromic rare-earth complexes, [Ln(LN6)(NO3)2](BPh4) [1-Ln, Ln = Dy, Tb, Eu, Gd, Y; LN6 = (3E,5E,10E,12E)-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane-3,5,10,12-tetraene]. The behavior of photogenerated radicals of hexaazamacrocyclic ligands was revealed for the first time. Upon 365 nm light irradiation, complexes 1-Ln exhibit photochromic behavior induced by photogenerated radicals according to EPR and UV-vis analyses. Static and dynamic magnetic studies of 1-Dy and irradiated product 1-Dy* indicate weak ferromagnetic interactions among DyIII ions and photogenerated LN6 radicals, as well as slow magnetization relaxation behavior under a 2 kOe applied field. Further fitting analyses show that the magnetization relaxation in 1-Dy* is markedly different from 1-Dy. Time-dependent fluorescence measurements reveal the characteristic luminescence quenching dynamics of lanthanide in the photochromic process. Especially for irradiated product 1-Eu*, the luminescence is almost completely quenched within 5 min with a quenching efficiency of 98.4%. The results reported here provide a prospect for the design of radical-induced photochromic lanthanide single-molecule magnets and will promote the further development of multiresponsive photomagnetic materials.


Assuntos
Elementos da Série dos Lantanídeos , Luminescência , Magnetismo , Imãs , Fluorescência , Ligantes
8.
J Am Chem Soc ; 144(32): 14888-14896, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35918175

RESUMO

Metal-organic frameworks (MOFs) provide versatile platforms to construct multi-responsive materials. Herein, by introducing the neutral tetradentate ligand and the linear dicyanoaurate(I) anion, we reported a rare cationic MOF [FeII(TPB){AuI(CN)2}]I·4H2O·4DMF (TPB = 1,2,4,5-tetra(pyridin-4-yl)benzene) with hysteretic spin-crossover (SCO) behavior near room temperature. This hybrid framework with an open metal site (AuI) exhibits redox-programmable capability toward dihalogen molecules. By means of post-synthetic modification, all the linear [AuI(CN)2]- linkers can be oxidized to square planar [AuIII(CN)2X2]- units, which results in the hysteretic SCO behaviors switching from one-step to two-step for Br2 and three-step for I2. More importantly, the stepwise SCO behaviors can go back to one-step via the reduction by l-ascorbic acid (AA). Periodic DFT calculations using various SCAN-type exchange-correlation functionals have been employed to rationalize the experimental data. Hence, these results demonstrate for the first time that switchable one-/two-/three-stepped SCO dynamics can be manipulated by chemical redox reactions, which opens a new perspective for multi-responsive molecular switches.

9.
Inorg Chem ; 61(24): 9047-9054, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35678748

RESUMO

Linkage isomers involving changes in the bonding mode of ambidentate ligands have potential applications in data storage, molecular machines, and motors. However, the observation of the cyanide-linkage-isomerism-induced spin change (CLIISC) effect characterized by single-crystal X-ray diffraction remains a considerable challenge. Meanwhile, the high-spin and low-spin states can be reversibly switched in spin-crossover (SCO) compounds, which provide the potential for applications to data storage, switches, and sensors. Here, a new perovskite-type SCO framework (PPN)[Fe{Ag(CN)2}3] (PPN+ = bis(trisphenylphosphine)iminium cation) is synthesized, which displays the unprecedented aging and temperature dependences of hysteretic multistep SCO behaviors near room temperature. Moreover, the thermal-induced cyanide linkage isomerization from FeII-N≡C-AgI to FeII-C≡N-AgI is revealed by single-crystal X-ray diffraction, Raman, and Mössbauer spectra, which is associated with a transition from the mixed spin state to the low-spin state and a dramatic volume shrinkage. Considering the wide use of cyanogen in magnetic systems, the association of CLIISC and SCO opens a new dimension to modulate the spin state and realize a colossal negative thermal expansion.

10.
Chem Commun (Camb) ; 57(85): 11177-11180, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34617535

RESUMO

We report herein three air, thermal and solvent stable interlocked triacontanuclear giant nanocages, generated using a node and spacer concept. Interestingly, the crystal structures of the cages are not only nano-dimensional but also exist in the nano-dimension range, which was corroborated with microscopic images. The combination of microscopic and crystallographic data, in effect, led us to a unique advantageous situation of generating nanomaterials with hard-to-come-by structural information at the molecular level.

11.
Dalton Trans ; 50(20): 6778-6783, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33972985

RESUMO

Herein, we reported two didysprosium single-molecule magnets constructed with {Dy(bbpen)(MeOH)} subunits and a π-conjugated tpb or non-conjugated tpcb bridging ligand. The former exhibits extremely weak luminescence that makes it difficult to simulate its emission spectra. However, the later shows obviously enhanced and well-resolved luminescence, which helps us to gain knowledge about the magneto-optical correlation and the relevant magnetic energy levels.

13.
Dalton Trans ; 50(12): 4152-4158, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33688869

RESUMO

Two new two-dimensional (2D) coordination polymers, [FeII(L)2{PdII(SCN)4}] (L1 = 3-(9-anthracenyl)-pyridine (1) and L2 = 4-(9-anthracenyl)-pyridine (2)), were constructed by employing square-planar [Pd(SCN)4]2- building blocks. Compound 1 exhibits a complete spin-crossover (SCO) behaviour under normal atmospheric pressure, and represents the first SCO example in a 2D system containing [Pd(SCN)4]2- units. In contrast, compound 2 only shows paramagnetic behaviour at measured temperatures. It is clear that the fine-tuning of the monodentate ligand can modulate the ligand field and packing fashions, which sheds light on developing new SCO materials.

14.
Angew Chem Int Ed Engl ; 60(10): 5299-5306, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216437

RESUMO

Combining Ising-type magnetic anisotropy with collinear magnetic interactions in single-molecule magnets (SMMs) is a significant synthetic challenge. Herein we report a Dy[15-MCCu -5] (1-Dy) SMM, where a DyIII ion is held in a central pseudo-D5h pocket of a rigid and planar Cu5 metallacrown (MC). Linking two Dy[15-MCCu -5] units with a single hydroxide bridge yields the double-decker {Dy[15-MCCu -5]}2 (2-Dy) SMM where the anisotropy axes of the two DyIII ions are nearly collinear, resulting in magnetic relaxation times for 2-Dy that are approximately 200 000 times slower at 2 K than for 1-Dy in zero external field. Whereas 1-Dy and the YIII -diluted Dy@2-Y analogue do not show remanence in magnetic hysteresis experiments, the hysteresis data for 2-Dy remain open up to 6 K without a sudden drop at zero field. In conjunction with theoretical calculations, these results demonstrate that the axial ferromagnetic Dy-Dy coupling suppresses fast quantum tunneling of magnetization (QTM). The relaxation profiles of both complexes curiously exhibit three distinct exponential regimes, and hold the largest effective energy barriers for any reported d-f SMMs up to 625 cm-1 .

15.
Dalton Trans ; 49(40): 14140-14147, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33021292

RESUMO

By employing mixed ligands, a new trinuclear dysprosium complex [Dy3(dbm)3(L)4](ClO4)2·CH2Cl2·2MeOH (1, Hdbm = dibenzoylmethane; HL = 2-methoxy-6-((quinolin-8-ylimino)methyl)phenol) was synthesized by a one-pot reaction. According to structural characterization, all the 8-coordinated Dy(iii) sites are well arranged with slightly distorted square antiprism (D4d) geometries. Magnetic measurements reveal that 1 exhibits typical single-molecule magnetic behavior at zero magnetic field and shows rarely open hysteresis loops up to 3 K among open-ring {Dy3} SMMs, where the relaxation time remains very stable under the protection from the Dy-Dy magnetic coupling in the open-ring arrangement of Ising spins.

16.
Chem Commun (Camb) ; 56(33): 4551-4554, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32202578

RESUMO

The first spin-crossover (SCO) complex with an organic-inorganic hybrid perovskite structure (PPN)[Fe{Au(CN)2}3] (1) is reported, which displays three-step SCO behaviour. The light-induced excited spin-state trapping measurement gives T0 = 134 K for a three-dimensional FeL3-type (L = bis-monodentate ligand) SCO complex. Moreover, spin-state dependent fluorescence is observed in 1.

17.
Dalton Trans ; 49(13): 4164-4171, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159566

RESUMO

Single-molecule magnets (SMMs) with higher nuclearity provide opportunity for understanding the inherent nature of magnetic dynamics that are not limited to mononuclear SMMs. Herein, centrosymmetric [Dy2(L)2(9-AC)4(MeOH)2]·2CH2Cl2·2H2O (1, where 9-AC = anthracene-9-carboxylate) and equilateral triangular [Dy3(OH)(OMe)(L)3(dbm)3](OH)·3CH2Cl2·7H2O (2, where dbm = dibenzoylmethane anion) were isolated using the Schiff-base ligand 4-(anthracen-9-yl)-2-((quinolin-8-ylimino)methyl)phenol (HL). Static and dynamic magnetic measurements reveal that 1 and 2 display slow magnetic relaxation under zero and applied dc field, respectively. The magnetization relaxation for 1 is dominated by a Raman process due to its non-negligible transverse anisotropy. Complex 2 exhibits field-induced SMM behavior with a reversal barrier of 56 cm-1. By means of ab initio calculations and magnetic measurements, the multiple relaxation regime in 2 was investigated. We suggest that Orbach and Raman mechanisms dominate in the high/low temperature domains, respectively.

18.
Inorg Chem ; 59(1): 687-694, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31820951

RESUMO

The combination of magnetic interaction with high magnetic anisotropy provides a promising way for modulating/fine-tuning molecular magnetic behaviors. Here, we show the building block approach for the synthesis of a family of dilanthanide single-molecule magnets (SMMs) bridged with a cyanometallate starting from a monolanthanide SMM. Contingent on the central para-/diamagnetic [M(CN)6]3- (M = Fe, Co) integrated between two highly anisotropic pentagonal-bipyramid Dy(III) subunits, the remanence of magnetization is OFF/ON below 15 K and they respectively display a record reversal barrier of 659 K among d-f SMMs and 975 K among cyano-bridged SMMs.

19.
Inorg Chem ; 58(16): 10694-10703, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31390195

RESUMO

The reactions of chiral ligand (R)/(S)-1,1'-binaphthyl-2,2'-diyl phosphate (R-HL/S-HL) and ErCl3·6H2O afford two pairs of di- and tetranuclear enantiomers [Er2(R/S-L)4(EtOH)6]Cl2·6.5EtOH (R-1, S-1) and [Er4(PO4)(R/S-L)8(EtOH)3(H2O)]2Cl(OH)·15EtOH·11H2O (R-2, S-2). The nuclearity of these complexes is controllable and depends on the reaction temperature with a template effect. Their chirality was evidenced by circular dichroism (CD) spectra. R-1 exhibits two magnetic relaxation pathways under a zero field, with an apparent barrier of 40 K. Ab initio calculations revealed a ferromagnetic dipolar interaction between these two Er(III) ions, the equatorial nature of the ligand field, and the probable origin of the two relaxations.

20.
Chem Commun (Camb) ; 55(67): 9939-9942, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31369022

RESUMO

Herein we report a stable and high-performance Dy(iii) single-ion magnet (SIM) showing an energy barrier of 944 K under zero dc field, with an open hysteresis loop up to 6 K. To the best of our knowledge, this is the highest energy barrier for a square antiprism as well as phosphine oxide based Dy-SIMs, reported so far.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...