Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 583, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962316

RESUMO

BACKGROUND: Patatin-like phospholipase domain containing 5 (PNPLA5) is a newly-discovered lipase. Although the PNPLA family plays critical roles in diverse biological processes, the biological functions of PNPLA5 mostly unknown. We previously found that the deletion of Pnpla5 in rats causes a variety of phenotypic abnormalities. In this study, we further explored the effects of Pnpla5 knockout (KO) on male rats. RESULTS: The body weight and testicular or epididymal tissue weight of three to six 3-month-old Pnpla5 KO or wild-type (WT) male Sprague-Dawley rats were measured. The protein expression levels were also measured via western blotting and iTRAQ (isobaric tags for relative and absolute quantitation) analyses. No significant difference between Pnpla5 KO and WT rats, regarding body weight, testicular or epididymal tissue weight, or hormone levels, were found. However, the relative testicular tissue weight of the KO (Pnpla5-/-) rats was higher (P < 0.05) than that of WT rats. Significant increases in apoptotic cells numbers (P < 0.001) and BAX and Caspase-9 expression levels were observed in the testicular tissue of Pnpla5-/- rats. Moreover, iTRAQ analysis revealed that the levels of proteins involved in steroid metabolism and wound healing were significantly decreased in Pnpla5-/- rats. CONCLUSION: This study revealed that Pnpla5 knockout induced apoptosis in rat testes. We also ascertained that Pnpla5 plays an important role in lipid metabolism, wound healing, and affects reproductive organs negatively, providing new target genes and pathways that can be analyzed to unravel the biological function of Pnpla5.


Assuntos
Metabolismo dos Lipídeos , Cicatrização , Animais , Peso Corporal , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Esteroides , Cicatrização/genética
2.
Microbiol Spectr ; 10(4): e0071722, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862956

RESUMO

Several studies have suggested a role for gut mucosa-associated microbiota in the development of obesity, but the mechanisms involved are poorly defined. Here, the impact of the gut mucosa-associated microbiota on obesity and related metabolic disorders was evaluated in a metabolic syndrome (MetS) porcine model. Body composition was determined among male Wuzhishan minipigs consuming a high-energy diet (HED) and compared to that of those consuming a normal diet (ND), and gut segments (duodenum, jejunum, ileum, cecum, colon, and rectum) were sampled for paired analysis of mucosa-associated microbiota and transcriptome signatures with 16S rRNA gene and RNA sequencing, respectively. Our data indicated that long-term HED feeding significantly increased body weight and visceral fat deposition and aggravated metabolic disorders. Specially, HED feeding induced mucosa-associated microbiota dysbiosis and selectively increased the abundance of the families Enterobacteriaceae, Moraxellaceae, and Lachnospiraceae in the upper intestine. The association analysis indicated that specific bacteria play key roles in adiposity, e.g., Lactobacillus johnsonii in the duodenum, Actinobacillus indolicus in the jejunum, Acinetobacter johnsonii in the ileum, Clostridium butyricum in the cecum, Haemophilus parasuis in the colon, and bacterium NLAEzlP808, Halomonas taeheungii, and Shewanella sp. JNUH029 in the rectum. Transcriptome data further revealed intestinal lipid metabolism and immune dysfunction in the MetS individuals, which may be associated with obesity and related metabolic disorders. Our results indicated that gut mucosa-associated microbiota dysbiosis has the potential to exacerbate obesity, partially through modulating systemic inflammatory responses. IMPORTANCE Obesity is a major risk factor for metabolic syndrome, which is the most common cause of death worldwide, especially in developed countries. The link between obesity and gut mucosa-associated microbiota is unclear due to challenges associated with the collection of intestinal samples from humans. The current report provides the first insight into obesity-microbiome-gut immunity connections in a metabolic syndrome (MetS) porcine model. The present results show that dysbiosis of mucosal microbiota along the entire digestive tract play a critical role in the proinflammatory response in the host-microbial metabolism axis, resulting in obesity and related metabolic disorders in the MetS model.


Assuntos
Síndrome Metabólica , Microbiota , Animais , Bactérias/genética , Bactérias/metabolismo , Disbiose/microbiologia , Humanos , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/microbiologia , Mucosa , Obesidade/microbiologia , RNA Ribossômico 16S/genética , Suínos , Porco Miniatura/genética , Transcriptoma
3.
FASEB J ; 32(8): 4258-4269, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29543532

RESUMO

Pregnant women at risk of preterm labor usually receive synthetic glucocorticoids (sGCs) to promote fetal lung development. Emerging evidence indicates that antenatal sGC increases the risk of affective disorders in offspring. Data from animal studies show that such disorders can be transmitted to the second generation. However, the molecular mechanisms underlying the intergenerational effects of prenatal sGC remain largely unknown. Here we show that prenatal dexamethasone (Dex) administration in late pregnancy induced depression-like behavior in first-generation (F1) offspring, which could be transmitted to second-generation (F2) offspring with maternal dependence. Moreover, corticotropin-releasing hormone (CRH) and CRH receptor type 1 (CRHR1) expression in the hippocampus was increased in F1 Dex offspring and F2 offspring from F1 Dex female rats. Administration of a CRHR1 antagonist to newborn F1 Dex offspring alleviated depression-like behavior in these rats at adult. Furthermore, we demonstrated that increased CRHR1 expression in F1 and F2 offspring was associated with hypomethylation of CpG islands in Crhr1 promoter. Our results revealed that prenatal sGC exposure could program Crh and Crhr1 gene expression in hippocampus across 2 generations, thereby leading to depression-like behavior. Our study indicates that prenatal sGC can cause epigenetic instability, which increases the risk of disease development in the offspring's later life.-Xu, Y.-J., Sheng, H., Wu, T.-W., Bao, Q.-Y., Zheng, Y., Zhang, Y.-M., Gong, Y.-X., Lu, J.-Q., You, Z.-D., Xia, Y., Ni, X. CRH/CRHR1 mediates prenatal synthetic glucocorticoid programming of depression-like behavior across 2 generations.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Depressão/induzido quimicamente , Depressão/metabolismo , Glucocorticoides/efeitos adversos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Ilhas de CpG/efeitos dos fármacos , Dexametasona/efeitos adversos , Feminino , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Relações Mãe-Filho , Gravidez , Regiões Promotoras Genéticas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
4.
Sheng Li Xue Bao ; 68(5): 611-620, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27778025

RESUMO

Nitric oxide, carbon monoxide and hydrogen sulfide synthesized endogenously in living organisms produce an array of disparate biological effects, so as to be considered as gas transmitters. These three gaseous molecules play important roles in many physiological and pathological processes in the bodies, such as the regulation of vascular tone and inflammatory responses as well as reproductive function. This review mainly focuses on the distribution and biological functions of these three gas transmitters in female reproductive tissues.


Assuntos
Reprodução , Monóxido de Carbono , Feminino , Humanos , Sulfeto de Hidrogênio , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...