Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202415966, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292507

RESUMO

High Br-content mixed-halide perovskites with wide-bandgap (WBG) of 1.6-2.0 eV have showcased vast potential to be used in tandem solar cells. However, they often suffer from severe halide segregation, phase separation and ion migration issues, which would accelerate the decomposition of perovskites films, deteriorate the photovoltaic performance and even aggravate the lead leakage from damaged devices. Here, we report a novel chemical synergic interaction strategy to mitigate the abovementioned issues. A small amount of cationic ß-cyclodextrin, composed of multiple ammonium cations, chlorine ions and abundant hydroxyl functional groups, was introduced into WBG perovskites, which effectively stabilized the halide ions and homogenized the phase distribution, comprehensively passivated the defects,and efficiently immobilized the Pb2+ ions. Encouragingly, the cationic ß-cyclodextrin was universal and useful for different WBG perovskites, which favorably boosted the efficiencies by 10%-36% and extended the device operational stability to 2680 h. The integrated four-terminal or six-terminal all-perovskite tandem solar cells exhibited efficiencies up to 24.39% and 22.42%, respectively. We demonstrated the cationic ß-cyclodextrin-assisted internal chemical encapsulation effectively prevented the Pb leakage from severely damaged devices with only 5.63 ppb Pb leaching out. The target tandem solar cells with cationic ß-cyclodextrin modification also realized a Pb sequestration efficiency of 93.4%.

2.
Adv Mater ; : e2405860, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39108194

RESUMO

Narrow-bandgap Sn-Pb alloying perovskites showcased great potential in constructing multiple-junction perovskite solar cells (PSCs) with efficiencies approaching or exceeding the Shockley-Queisser limit. However, the uncontrollable surface metal abundance (Sn2+ and Pb2+ ions) hinders their efficiency and versatility in different device structures. Additionally, the undesired Pb distribution mainly at the buried interface accelerates the Pb leakage when devices are damaged. In this work, a novel strategy is presented to modulate crystallization kinetics and surface metal abundance of Sn-Pb perovskites using a cobweb-like quadrangular macrocyclic porphyrin material, which features a molecular size compatible with the perovskite lattice and robustly coordinates with Pb2+ ions, thus immobilizing them and increasing surface Pb abundance by 61%. This modulation reduces toxic Pb leakage rates by 24-fold, with only ∼23 ppb Pb in water after severely damaged PSCs are immersed in water for 150 h.This strategy can also enhance chemical homogeneity, reduce trap density, release tensile strain and optimize carrier dynamics of Sn-Pb perovskites and relevant devices. Encouragingly, the power conversion efficiency (PCEs) of 23.28% for single-junction, full-stack devices and 21.34% for hole transport layer-free Sn-Pb PSCs are achieved.Notably, the related monolithic all-perovskite tandem solar cell also achieves a PCE of 27.03% with outstanding photostability.

3.
Angew Chem Int Ed Engl ; 63(39): e202403196, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38972846

RESUMO

Photoactive black-phase formamidinium lead triiodide (α-FAPbI3) perovskite has dominated the prevailing high-performance perovskite solar cells (PSCs), normally for those spin-coated, conventional n-i-p structured devices. Unfortunately, α-FAPbI3 has not been made full use of its advantages in inverted p-i-n structured PSCs fabricated via blade-coating techniques owing to uncontrollable crystallization kinetics and complicated phase evolution of FAPbI3 perovskites during film formation. Herein, a customized crystal surface energy regulation strategy has been innovatively developed by incorporating 0.5 mol % of N-aminoethylpiperazine hydroiodide (NAPI) additive into α-FAPbI3 crystal-derived perovskite ink, which enabled the formation of highly-oriented α-FAPbI3 films. We deciphered the phase transformation mechanisms and crystallization kinetics of blade-coated α-FAPbI3 perovskite films via combining a series of in-situ characterizations and theoretical calculations. Interestingly, the strong chemical interactions between the NAPI and inorganic Pb-I framework help to reduce the surface energy of (100) crystal plane by 42 %, retard the crystallization rate and lower the formation energy of α-FAPbI3. Benefited from multifaceted advantages of promoted charge extraction and suppressed non-radiative recombination, the resultant blade-coated inverted PSCs based on (100)-oriented α-FAPbI3 perovskite films realized promising efficiencies up to 24.16 % (~26.5 % higher than that of the randomly-oriented counterparts), accompanied by improved operational stability. This result represented one of the best performances reported to date for FAPbI3-based inverted PSCs fabricated via scalable deposition methods.

4.
Angew Chem Int Ed Engl ; 62(38): e202309292, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37539832

RESUMO

The 2D/3D perovskite heterostructures have been widely investigated to enhance the efficiency and stability of perovskite solar cells (PSCs). However, rational manipulation of phase distribution and energy level alignment in such 2D/3D perovskite hybrids are still of great challenge. Herein, we successfully achieved spontaneous phase alignment of 2D/3D perovskite heterostructures by concurrently introducing both 2D perovskite component and organic halide additive. The graded phase distribution of 2D perovskites with different n values and 3D perovskites induced favorable energy band alignment across the perovskite film and boosted the charge transfer at the relevant heterointerfaces. Moreover, the 2D perovskite component also acted as a "band-aid" to simultaneously passivate the defects and release the residual tensile stress of perovskite films. Encouragingly, the blade-coated PSCs based on only ≈2 s in-situ fast annealed 2D/3D perovskite films with favorable energy funnels and toughened heterointerfaces achieved promising efficiencies of 22.5 %, accompanied by extended lifespan. To our knowledge, this is the highest reported efficiency for the PSCs fabricated with energy-saved thermal treatment just within a few seconds, which also outperformed those state-of-the-art annealing-free analogues. Such a two-second-in-situ-annealing technique could save the energy cost by up to 99.6 % during device fabrication, which will grant its low-coast implementation.

5.
Nat Commun ; 14(1): 4429, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481653

RESUMO

Organic nonlinear optical materials have potential in applications such as lightings and bioimaging, but tend to have low photoluminescent quantum yields and are prone to lose the nonlinear optical activity. Herein, we demonstrate to weave large-area, flexible organic nonlinear optical membranes composed of 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate@cyclodextrin host-guest supramolecular complex. These membranes exhibited a record high photoluminescence quantum yield of 73.5%, and could continuously emit orange luminescence even being heated at 300 °C, thus enabling the fabrication of thermotolerant light-emitting diodes. The nonlinear optical property of these membranes can be well-preserved even in polar environment. The supramolecular assemblies with multiphoton absorption characteristics were used for in vivo real-time imaging of Escherichia coli at 1000 nm excitation. These findings demonstrate to achieve scalable fabrication of organic nonlinear optical materials with high photoluminescence quantum yields, and good stability against thermal stress and polar environment for high-performance, durable optoelectronic devices and humanized multiphoton bio-probes.


Assuntos
Ciclodextrinas , Iluminação , Benzenossulfonatos , Escherichia coli
6.
Nanomicro Lett ; 15(1): 177, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428261

RESUMO

Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.

7.
Angew Chem Int Ed Engl ; 62(39): e202305551, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37325943

RESUMO

Sn perovskite solar cells have been regarded as one of the most promising alternatives to the Pb-based counterparts due to their low toxicity and excellent optoelectronic properties. However, the Sn perovskites are notorious to feature heavy p-doping characteristics and possess abundant vacancy defects, which result in under-optimized interfacial energy level alignment and severe nonradiative recombination. Here, we reported a synergic "electron and defect compensation" strategy to simultaneously modulate the electronic structures and defect profiles of Sn perovskites via incorporating a traced amount (0.1 mol %) of heterovalent metal halide salts. Consequently, the doping level of modified Sn perovskites was altered from heavy p-type to weak p-type (i.e. up-shifting the Fermi level by ∼0.12 eV) that determinately reducing the barrier of interfacial charge extraction and effectively suppressing the charge recombination loss throughout the bulk perovskite film and at relevant interfaces. Pioneeringly, the resultant device modified with electron and defect compensation realized a champion efficiency of 14.02 %, which is ∼46 % higher than that of control device (9.56 %). Notably, a record-high photovoltage of 1.013 V was attained, corresponding to the lowest voltage deficit of 0.38 eV reported to date, and narrowing the gap with Pb-based analogues (∼0.30 V).

8.
Sci Bull (Beijing) ; 68(12): 1271-1282, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37258377

RESUMO

Narrow-bandgap mixed Sn-Pb perovskite solar cells (PSCs) have showcased great potential to approach the Shockley-Queisser limit. Nevertheless, the practical application and long-term deployment of mixed Sn-Pb PSCs are still largely impeded by the rapid oxidation of Sn2+ ions and under-optimized carrier transport layer (CTL)/perovskite interfaces that would inevitably incur serious interfacial charge recombination and device performance degradation. Herein, we successfully removed the hole transport layer (HTL) by incorporating a small amount of organic phosphonic acid molecules into perovskites, which could preferably interact with Sn2+ ions (relative to Pb2+ analogues) at the grain boundaries (GBs) throughout the perovskite film thickness via coordination bonding, thus effectively retarding the oxidation of Sn2+, passivating the defects and suppressing the non-radiative recombination. Targeted modification effectively reinforced built-in potential by ∼100 mV, and favorably induced energy level cascade, thus accelerating spatial charge separation and facilitating the hole extraction from perovskite layer to underlying conductive electrodes even in the absence of HTL. Consequently, enhanced power conversion efficiencies up to 20.21% have been achieved, which is the record efficiency for the HTL-free mixed Sn-Pb PSCs, accompanied by a decent photovoltage of 0.87 V and improved long-term stability over 2400 h.

9.
Angew Chem Int Ed Engl ; 62(17): e202300265, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36811604

RESUMO

Mixed-cation, small band-gap perovskites via rationally alloying formamidinium (FA) and methylammonium (MA) together have been widely employed for blade-coated perovskite solar cells with satisfied efficiencies. One of the stringent challenges lies in difficult control of the nucleation and crystallization kinetics of the perovskites with mixed ingredients. Herein, a pre-seeding strategy by mixing FAPbI3 solution with pre-synthesized MAPbI3 microcrystals has been developed to smartly decouple the nucleation and crystallization process. As a result, the time window of initialized crystallization has been greatly extended by 3 folds (i.e. from 5 s to 20 s), which enables the formation of uniform and homogeneous alloyed-FAMA perovskite films with designated stoichiometric ratios. The resultant blade-coated solar cells achieved a champion efficiency of 24.31 % accompanied by outstanding reproducibility with more than 87 % of the devices showing efficiencies higher than 23 %.

10.
Nat Commun ; 14(1): 234, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646678

RESUMO

Lead halide perovskites show great potential to be used in wearable optoelectronics. However, obstacles for real applications lie in their instability under light, moisture and temperature stress, noxious lead ions leakage and difficulties in fabricating uniform luminescent textiles at large scale and high production rates. Overcoming these obstacles, we report simple, high-throughput electrospinning of large-area (> 375 cm2) flexible perovskite luminescent textiles woven by ultra-stable polymer@perovskite@cyclodextrin@silane composite fibers. These textiles exhibit bright and narrow-band photoluminescence (a photoluminescence quantum yield of 49.7%, full-width at half-maximum <17 nm) and the time to reach 50% photoluminescence of 14,193 h under ambient conditions, showcasing good stability against water immersion (> 3300 h), ultraviolet irradiation, high temperatures (up to 250 °C) and pressure surge (up to 30 MPa). The waterproof PLTs withstood fierce water scouring without any detectable leaching of lead ions. These low-cost and scalable woven PLTs enable breakthrough application in marine rescue.

11.
Sci Bull (Beijing) ; 67(23): 2389-2391, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566057

Assuntos
Energia Solar
12.
Angew Chem Int Ed Engl ; 61(40): e202209464, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35982524

RESUMO

Tin-based perovskite solar cells (Sn-PSCs) have emerged as promising environmentally viable photovoltaic technologies, but still suffer from severe non-radiative recombination loss due to the presence of abundant deep-level defects in the perovskite film and under-optimized carrier dynamics throughout the device. Herein, we healed the structural imperfections of Sn perovskites in an "inside-out" manner by incorporating a new class of biocompatible chelating agent with multidentate claws, namely, 2-Guanidinoacetic acid (GAA), which passivated a variety of deep-level Sn-related and I-related defects, cooperatively reinforced the passivation efficacy, released the lattice strain, improved the structural toughness, and promoted the carrier transport of Sn perovskites. Encouragingly, an efficiency of 13.7 % with a small voltage deficit of ≈0.47 V has been achieved for the GAA-modified Sn-PSCs. GAA modification also extended the lifespan of Sn-PSCs over 1200 hours.


Assuntos
Compostos de Cálcio , Estanho , Quelantes , Óxidos , Recombinação Genética , Titânio
13.
Angew Chem Int Ed Engl ; 60(44): 23735-23742, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34410033

RESUMO

Simplified perovskite solar cells (PSCs) were fabricated with the perovskite layer sandwiched and encapsulated between carbon-based electron transport layer (ETL) and counter electrode (CE) by a fully blade-coated process. A self-assembled monolayer of amphiphilic silane (AS) molecules on transparent conducting oxide (TCO) substrate appeals to the fullerene ETL deposition and preserves its integrity against the solvent damage. The AS serves as a "molecular glue" to strengthen the adhesion toughness at the TCO/ETL interface via robust chemical interaction and bonding, facilitating the interfacial charge extraction, increasing PCEs by 77 % and reducing hysteresis. A PCE of 18.64 % was achieved for the fully printed devices, one of the highest reported for carbon-based PSCs. AS-assisted interfacial linkage and carbon-material-assisted self-encapsulation enhance the stability of the PSCs, which did not experience performance degradation when stored at ambient conditions for over 3000 h.

14.
Sci Bull (Beijing) ; 66(6): 621-636, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654432

RESUMO

The power conversion efficiency for single-junction solar cells is limited by the Shockley-Quiesser limit. An effective approach to realize high efficiency is to develop multi-junction cells. These years have witnessed the rapid development of organic-inorganic perovskite solar cells. The excellent optoelectronic properties and tunable bandgaps of perovskite materials make them potential candidates for developing tandem solar cells, by combining with silicon, Cu(In,Ga)Se2 and organic solar cells. In this review, we present the recent progress of perovskite-based tandem solar cells, including perovskite/silicon, perovskite/perovskite, perovskite/Cu(In,Ga)Se2, and perovskite/organic cells. Finally, the challenges and opportunities for perovskite-based tandem solar cells are discussed.

15.
Angew Chem Int Ed Engl ; 59(47): 20980-20987, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32716141

RESUMO

The performances of electron-transport-layer (ETL)-free perovskite solar cells (PSCs) are still inferior to ETL-containing devices. This is mainly due to severe interfacial charge recombination occurring at the transparent conducting oxide (TCO)/perovskite interface, where the photo-injected electrons in the TCO can travel back to recombine with holes in the perovskite layer. Herein, we demonstrate for the first time that a non-annealed, insulating, amorphous metal oxyhydroxide, atomic-scale thin interlayer (ca. 3 nm) between the TCO and perovskite facilitates electron tunneling and suppresses the interfacial charge recombination. This largely reduced the interfacial charge recombination loss and achieved a record efficiency of 21.1 % for n-i-p structured ETL-free PSCs, outperforming their ETL-containing metal oxide counterparts (18.7 %), as well as narrowing the efficiency gap with high-efficiency PSCs employing highly crystalline TiO2 ETLs.

16.
Adv Mater ; 32(28): e2000995, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468688

RESUMO

Currently, blade-coated perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs), that is, greater than 20%, normally employ methylammonium lead tri-iodide with a sub-optimal bandgap. Alloyed perovskites with formamidinium (FA) cation have narrower bandgap and thus enhance device photocurrent. However, FA-alloyed perovskites show low phase stability and high moisture sensitivity. Here, it is reported that incorporating 0.83 molar percent organic halide salts (OHs) into perovskite inks enables phase-pure, highly crystalline FA-alloyed perovskites with extraordinary optoelectronic properties. The OH molecules modulate the crystal growth, enhance the phase stability, passivate ionic defects at the surface and/or grain boundaries, and enhance the moisture stability of the perovskite film. A high efficiency of 22.0% under 1 sun illumination for blade-coated PSCs is demonstrated with an open-circuit voltage of 1.18 V, corresponding to a very small voltage deficit of 0.33 V, and significantly improved operational stability with 96% of the initial efficiency retained under one sun illumination for 500 h.

17.
Chem Commun (Camb) ; 56(37): 5006-5009, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32242193

RESUMO

We, for the first time, correlated the alkyl chain length of amine molecules with the defect passivation efficacy, either on the surfaces or at grain boundaries of perovskite films. Blade-coated perovskite solar cells with long-chain amine passivation achieved an efficiency of 21.5%, accompanied by a small voltage loss of 0.35 V.

18.
Science ; 367(6484): 1352-1358, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32193323

RESUMO

We report the profiling of spatial and energetic distributions of trap states in metal halide perovskite single-crystalline and polycrystalline solar cells. The trap densities in single crystals varied by five orders of magnitude, with a lowest value of 2 × 1011 per cubic centimeter and most of the deep traps located at crystal surfaces. The charge trap densities of all depths of the interfaces of the polycrystalline films were one to two orders of magnitude greater than that of the film interior, and the trap density at the film interior was still two to three orders of magnitude greater than that in high-quality single crystals. Suprisingly, after surface passivation, most deep traps were detected near the interface of perovskites and hole transport layers, where a large density of nanocrystals were embedded, limiting the efficiency of solar cells.

19.
ACS Appl Mater Interfaces ; 12(10): 11450-11458, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32107913

RESUMO

The development of solution-processed inorganic amorphous electron-transporting layers (ETLs) is important for the future commercialization of perovskite solar cells (PSCs). The formation of such ETLs using low-temperature processing techniques will lower potential production costs and accommodate diverse substrate materials. Herein, a low-temperature (<150 °C) solution process forms amorphous titania nanowire (Am-TNW) thin films on fluorine-doped tin oxide conducting glass substrates. When applied as an ETL in PSCs, the Am-TNW layer achieves a higher average power conversion efficiency (18.3%) relative to that of a nanocrystalline anatase TNW (ATNW) layer obtained after high-temperature (500 °C) heating (16.7%). Compared to the ATNW counterparts, the Am-TNW-based PSCs exhibit inferior charge extraction across the TNW/CH3NH3PbI3 interface but more effectively suppress interfacial charge recombination. The insertion of a fullerene layer between the Am-TNW and CH3NH3PbI3 improves the charge extraction. The Am-TNW-based bilayer ETL gave optimal power conversion efficiencies of 20.3% and 19.0% for PSCs with 0.16 cm2 and 1.00 cm2 apertures, respectively. This is due to the concurrent advantages of enhanced light absorption, facilitated charge extraction, and reduced charge recombination. The use of the Am-TNW as an ETL in PSCs provides a facile, efficient way to increase the effectiveness of PSCs.

20.
J Am Chem Soc ; 142(8): 3989-3996, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32031790

RESUMO

State-of-the-art, high-performance perovskite solar cells (PSCs) contain a large amount of iodine to realize smaller bandgaps. However, the presence of numerous iodine vacancies at the surface of the film formed by their evaporation during the thermal annealing process has been broadly shown to induce deep-level defects, incur nonradiative charge recombination, and induce photocurrent hysteresis, all of which limit the efficiency and stability of PSCs. In this work, modifying the defective surface of perovskite films with cadmium iodide (CdI2) effectively reduces the degree of surface iodine deficiency and stabilizes iodine ions via the formation of strong Cd-I ionic bonds. This largely reduces the interfacial charge recombination loss, yielding a high efficiency of 21.9% for blade-coated PSCs with an open-circuit voltage of 1.20 V, corresponding to a record small voltage deficit of 0.31 V. The CdI2 surface treatment also improves the operational stability of the PSCs, retaining 92% efficiency after constant illumination at 1 sun intensity for 1000 h. This work provides a promising strategy to optimize the surface/interface optoelectronic properties of perovskites for more efficient and stable solar cells and other optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA