Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6698): 920-928, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781377

RESUMO

Excitatory and inhibitory synapses do not overlap even when formed on one submicron-sized dendritic protrusion. How excitatory and inhibitory postsynaptic cytomatrices or densities (e/iPSDs) are segregated is not understood. Broadly, why membraneless organelles are naturally segregated in cellular subcompartments is unclear. Using biochemical reconstitutions in vitro and in cells, we demonstrate that ePSDs and iPSDs spontaneously segregate into distinct condensed molecular assemblies through phase separation. Tagging iPSD scaffold gephyrin with a PSD-95 intrabody (dissociation constant ~4 nM) leads to mistargeting of gephyrin to ePSD condensates. Unexpectedly, formation of iPSD condensates forces the intrabody-tagged gephyrin out of ePSD condensates. Thus, instead of diffusion-governed spontaneous mixing, demixing is a default process for biomolecules in condensates. Phase separation can generate biomolecular compartmentalization specificities that cannot occur in dilute solutions.


Assuntos
Condensados Biomoleculares , Separação de Fases , Densidade Pós-Sináptica , Humanos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Densidade Pós-Sináptica/metabolismo , Células HeLa
2.
Cell ; 187(9): 2175-2193.e21, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552623

RESUMO

In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Retículo Endoplasmático , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Complexo de Golgi/metabolismo , Ratos , Transporte Biológico , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas do Citoesqueleto/metabolismo , Separação de Fases
3.
J Mol Biol ; 435(1): 167629, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595170

RESUMO

Action potential-induced neurotransmitter release in presynaptic boutons involves coordinated actions of a large list of proteins that are associated directly or indirectly with membrane structures including synaptic vesicles and plasma membranes. These proteins are often highly abundant in different synaptic bouton sub-compartments, and they rarely act alone. Instead, these proteins interact with each other forming intricate and distinct molecular complexes. Many of these complexes form condensed clusters on membrane surfaces. This review summarizes findings in recent years showing that many of presynaptic protein complex assemblies are formed via phase separation. These protein condensates extensively interact with lipid membranes via distinct modes, forming various mesoscale structures by different mode of organizations between membraneless condensates and membranous organelles. We discuss that such mesoscale interactions could have deep implications on mobilization, exocytosis, and retrieval of synaptic vesicles.


Assuntos
Sinapsinas , Vesículas Sinápticas , Membrana Celular/química , Vesículas Sinápticas/metabolismo , Sinapsinas/química , Endocitose , Transmissão Sináptica , Potenciais de Ação
4.
Neuropharmacology ; 193: 108622, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051266

RESUMO

Neuronal synapses encompass three compartments: presynaptic axon terminal, synaptic cleft, and postsynaptic dendrite. Each compartment contains densely packed molecular machineries that are involved in synaptic transmission. In recent years, emerging evidence indicates that the assembly of these membraneless substructures or assemblies that are not enclosed by membranes are driven by liquid-liquid phase separation. We review here recent studies that suggest the phase separation-mediated organization of these synaptic compartments. We discuss how synaptic function may be linked to its organization as biomolecular condensates. We conclude with a discussion of areas of future interest in the field for better understanding of the structural architecture of neuronal synapses and its contribution to synaptic functions.


Assuntos
Densidade Pós-Sináptica/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores de Glutamato/metabolismo , Transmissão Sináptica/fisiologia , Animais , Humanos , Neurônios/fisiologia , Sinapses/química , Sinapses/fisiologia , Sinapses/ultraestrutura
5.
Cell Res ; 31(1): 37-51, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33235361

RESUMO

Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) is essential for synaptic plasticity and learning by decoding synaptic Ca2+ oscillations. Despite decades of extensive research, new mechanisms underlying CaMKIIα's function in synapses are still being discovered. Here, we discover that Shank3 is a specific binding partner for autoinhibited CaMKIIα. We demonstrate that Shank3 and GluN2B, via combined actions of Ca2+ and phosphatases, reciprocally bind to CaMKIIα. Under basal condition, CaMKIIα is recruited to the Shank3 subcompartment of postsynaptic density (PSD) via phase separation. Rise of Ca2+ concentration induces GluN2B-mediated recruitment of active CaMKIIα and formation of the CaMKIIα/GluN2B/PSD-95 condensates, which are autonomously dispersed upon Ca2+ removal. Protein phosphatases control the Ca2+-dependent shuttling of CaMKIIα between the two PSD subcompartments and PSD condensate formation. Activation of CaMKIIα further enlarges the PSD assembly and induces structural LTP. Thus, Ca2+-induced and phosphatase-checked shuttling of CaMKIIα between distinct PSD nano-domains can regulate phase separation-mediated PSD assembly and synaptic plasticity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Plasticidade Neuronal/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Células HEK293 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Ligação Proteica , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Associadas SAP90-PSD95/metabolismo
6.
Mol Cell ; 81(1): 13-24.e7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33202250

RESUMO

Tethering of synaptic vesicles (SVs) to the active zone determines synaptic strength, although the molecular basis governing SV tethering is elusive. Here, we discover that small unilamellar vesicles (SUVs) and SVs from rat brains coat on the surface of condensed liquid droplets formed by active zone proteins RIM, RIM-BP, and ELKS via phase separation. Remarkably, SUV-coated RIM/RIM-BP condensates are encapsulated by synapsin/SUV condensates, forming two distinct SUV pools reminiscent of the reserve and tethered SV pools that exist in presynaptic boutons. The SUV-coated RIM/RIM-BP condensates can further cluster Ca2+ channels anchored on membranes. Thus, we reconstitute a presynaptic bouton-like structure mimicking the SV-tethered active zone with its one side attached to the presynaptic membrane and the other side connected to the synapsin-clustered SV condensates. The distinct interaction modes between membraneless protein condensates and membrane-based organelles revealed here have general implications in cellular processes, including vesicular formation and trafficking, organelle biogenesis, and autophagy.


Assuntos
Encéfalo/metabolismo , Canais de Cálcio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Canais de Cálcio/genética , Humanos , Camundongos , Ratos , Sinapsinas/genética , Vesículas Sinápticas/genética
7.
Dev Cell ; 55(1): 18-29, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32726576

RESUMO

Formation of biomolecular condensates that are not enclosed by membranes via liquid-liquid phase separation (LLPS) is a general strategy that cells adopt to organize membraneless subcellular compartments for diverse functions. Neurons are highly polarized with elaborate branching and functional compartmentalization of their neurites, thus, raising additional demand for the proper subcellular localization of both membraneless and membrane-based organelles. Recent studies have provided evidence that several protein assemblies involved in the establishment of neuronal stem cell (NSC) polarity and in the asymmetric division of NSCs form distinct molecular condensates via LLPS. In synapses of adult neurons, molecular apparatuses controlling presynaptic neurotransmitter release and postsynaptic signaling transmission are also likely formed via LLPS. These molecular condensates, though not enclosed by lipid bilayers, directly associate with plasma membranes or membrane-based organelles, indicating that direct communication between membraneless and membrane-based organelles is a common theme in neurons and other types of cells.


Assuntos
Neurogênese/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Comunicação Celular/fisiologia , Humanos , Organelas/metabolismo
8.
Structure ; 28(6): 664-673.e3, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348748

RESUMO

CASK forms an evolutionarily conserved tripartite complex with Mint1 and Veli critical for neuronal synaptic transmission and cell polarity. The CASK CaM kinase (CaMK) domain, in addition to interacting with Mint1, can also bind to many different target proteins, although the mechanism governing CASK-CaMK/target interaction selectivity is unclear. Here, we demonstrate that an extended sequence in the N-terminal unstructured region of Mint1 binds to CASK-CaMK with a dissociation constant of ∼7.5 nM. The high-resolution crystal structure of CASK-CaMK in complex with this Mint1 fragment reveals that the C-lobe of CASK-CaMK binds to a short sequence common to known CaMK targets and the N-lobe of CaMK engages an α helix that is unique to Mint1. Biochemical experiments together with structural analysis reveal that the CASK and Mint1 interaction is not regulated by Ca2+/CaM. The CASK/Mint1 complex structure provides mechanistic explanations for several CASK mutations identified in patients with brain disorders and cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Guanilato Quinases/química , Guanilato Quinases/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Guanilato Quinases/genética , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos , Transmissão Sináptica
9.
Nat Neurosci ; 23(3): 301-310, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015539

RESUMO

Emerging evidence indicates that liquid-liquid phase separation, the formation of a condensed molecular assembly within another diluted aqueous solution, is a means for cells to organize highly condensed biological assemblies (also known as biological condensates or membraneless compartments) with very broad functions and regulatory properties in different subcellular regions. Molecular machineries dictating synaptic transmissions in both presynaptic boutons and postsynaptic densities of neuronal synapses may be such biological condensates. Here we review recent developments showing how phase separation can build dense synaptic molecular clusters, highlight unique features of such condensed clusters in the context of synaptic development and signaling, discuss how aberrant phase-separation-mediated synaptic assembly formation may contribute to dysfunctional signaling in psychiatric disorders, and present some challenges and opportunities of phase separation in synaptic biology.


Assuntos
Densidade Pós-Sináptica/fisiologia , Sinapses/fisiologia , Animais , Humanos , Densidade Pós-Sináptica/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/química , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia
10.
J Biol Chem ; 294(40): 14823-14835, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31444270

RESUMO

Liquid-liquid phase separation (LLPS) facilitates the formation of condensed biological assemblies with well-delineated physical boundaries, but without lipid membrane barriers. LLPS is increasingly recognized as a common mechanism for cells to organize and maintain different cellular compartments in addition to classical membrane-delimited organelles. Membraneless condensates have many distinct features that are not present in membrane-delimited organelles and that are likely indispensable for the viability and function of living cells. Malformation of membraneless condensates is increasingly linked to human diseases. In this review, we summarize commonly used methods to investigate various forms of LLPS occurring both in 3D aqueous solution and on 2D membrane bilayers, such as LLPS condensates arising from intrinsically disordered proteins or structured modular protein domains. We then discuss, in the context of comparisons with membrane-delimited organelles, the potential functional implications of membraneless condensate formation in cells. We close by highlighting some challenges in the field devoted to studying LLPS-mediated membraneless condensate formation.


Assuntos
Membrana Celular/química , Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Microextração em Fase Líquida/métodos , Organelas/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/isolamento & purificação , Domínios Proteicos
11.
Mol Cell ; 73(5): 971-984.e5, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661983

RESUMO

Both the timing and kinetics of neurotransmitter release depend on the positioning of clustered Ca2+ channels in active zones to docked synaptic vesicles on presynaptic plasma membranes. However, how active zones form is not known. Here, we show that RIM and RIM-BP, via specific multivalent bindings, form dynamic and condensed assemblies through liquid-liquid phase separation. Voltage-gated Ca2+ channels (VGCCs), via C-terminal-tail-mediated direct binding to both RIM and RIM-BP, can be enriched to the RIM and RIM-BP condensates. We further show that RIM and RIM-BP, together with VGCCs, form dense clusters on the supported lipid membrane bilayers via phase separation. Therefore, RIMs and RIM-BPs are plausible organizers of active zones, and the formation of RIM and RIM-BP condensates may cluster VGCCs into nano- or microdomains and position the clustered Ca2+ channels with Ca2+ sensors on docked vesicles for efficient and precise synaptic transmissions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Canais de Cálcio Tipo N/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Membranas Sinápticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sítios de Ligação , Canais de Cálcio Tipo N/genética , Proteínas de Ligação ao GTP/genética , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Solubilidade , Membranas Sinápticas/genética , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...