Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Med Oncol ; 40(8): 240, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37442847

RESUMO

Platelet-derived growth factor receptor-ß (PDGFRß) is a critical type III receptor tyrosine kinase family member, which is involved in Wilms' tumour (WT) metastasis and aerobic glycolysis. The role of PDGFRß in tumour angiogenesis has not been fully elucidated. Here, we examined the effect of PDGFRß on angiogenesis in WT. First, the NCBI database integrated three datasets, GSE2712, GSE11151, and GSE73209, to screen differentially expressed genes. The R language was used to analyse the correlation between PDGFRB and vascular endothelial growth factor (VEGF). The results showed that PDGFRB, encoding PDGFRß, was upregulated in WT, and its level was correlated with VEGFA expression. Next, PDGFRß expression was inhibited by small interfering RNA (siRNA) or activated with the exogenous ligand PDGF-BB. The expression and secretion of the angiogenesis elated factor VEGFA in WT G401 cells were detected using Western blotting and ELISA, respectively. The effects of conditioned medium from G401 cells on endothelial cell viability, migration, invasion, the total length of the tube, and the number of fulcrums were investigated. To further explore the mechanism of PDGFRß in the angiogenesis of WT, the expression of VEGFA was detected after blocking the phosphatidylinositol-3-kinase (PI3K) pathway and inhibiting the expression of PKM2, a key enzyme of glycolysis. The results indicated that PDGFRß regulated the process of tumour angiogenesis through the PI3K/AKT/PKM2 pathway. Therefore, this study provides a novel therapeutic strategy to target PDGFRß and PKM2 to inhibit glycolysis and anti-angiogenesis, thus, developing a new anti-vascular therapy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Tumor de Wilms , Humanos , Becaplermina/metabolismo , Becaplermina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
2.
World J Clin Cases ; 10(22): 7631-7641, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36158513

RESUMO

Alzheimer's disease (AD) is one of the most common age-related neurodegenerative disorders that have been studied for more than 100 years. Although an increased level of amyloid precursor protein is considered a key contributor to the development of AD, the exact pathogenic mechanism remains known. Multiple factors are related to AD, such as genetic factors, aging, lifestyle, and nutrients. Both epidemiological and clinical evidence has shown that the levels of micronutrients, such as copper, zinc, and iron, are closely related to the development of AD. In this review, we summarize the roles of eight micronutrients, including copper, zinc, iron, selenium, silicon, manganese, arsenic, and vitamin D in AD based on recently published studies.

3.
Ann Clin Lab Sci ; 52(1): 101-108, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35181623

RESUMO

OBJECTIVE: To investigate the effect of dichloroacetate (DCA) on Wilms' tumor (WT) G401 cells. METHODS: CCK-8 assay was used to detect the influence of DCA on G401 cells viability and 10 mmol/L DCA was selected for subsequent experiments. The expression of glycolysis-related enzymes, such as hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), lactic acid dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase (PDH), were detected by qRT-PCR and western blot. The extracellular lactic acid and glucose concentrations were measured by the lactic acid assay kit and glucose oxidase method kit respectively. Flow cytometry was used to detect the effect of DCA on G401 cells apoptosis. The invasion and migration ability of G401 cells were detected by Transwell assay and wound-healing assay. RESULTS: The results showed that DCA reduced glycolysis-related enzymes expression, inhibited lactic acid production, and glucose consumption. DCA also suppressed cells growth, induced cells apoptosis and inhibited cells invasion and migration. CONCLUSION: Inhibition of aerobic glycolysis by DCA can reduce the viability of G401 cells, promote cells apoptosis and inhibit cells invasion and migration. Therefore, aerobic glycolysis may be a potential therapeutic target for Wilms' tumor.


Assuntos
Neoplasias Renais , Tumor de Wilms , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Humanos
4.
Cell Biol Int ; 46(6): 907-921, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35165984

RESUMO

Wilms' tumor (WT) is the most common pediatric renal malignancy. PDGFRß belongs to the type III receptor tyrosine kinase family and is known to be involved in tumor metastasis and angiogenesis. Here, we studied the effect and underlying mechanism of PDGFRß on WT G401 cells. Transwell assay and wound-healing assay were used to detect the effect of PDGFRß on G401 cells invasion and migration. Western blot and immunofluorescence were used to detect the expression of EMT-related genes. The expression of PI3K/AKT/mTOR pathway proteins was detected by Western blot. The relationship between PDGFRß and aerobic glycolysis was studied by assessing the expression of glycolysis-related enzymes detected by qRT-PCR and Western blot. The activity of HK, PK, and LDH was detected by corresponding enzyme activity kits. The concentration of lactic acid and glucose was detected by Lactic Acid Assay Kit and Glucose Assay Kit-glucose oxidase method separately. To investigate the mechanism of PDGFRß in the development of WT, the changes of glucose and lactic acid were analyzed after blocking PI3K pathway, aerobic glycolysis, or PDGFRß. The key enzyme was screened by Western blot and glucose metabolism experiment after HK2, PKM2, and PDK1 were inhibited. The results showed that PDGFRß promoted the EMT process by modulating aerobic glycolysis through PI3K/AKT/mTOR pathway in which PKM2 plays a key role. Therefore, our study of the mechanism of PDGFRß in G401 cells provides a new target for the treatment of WT.


Assuntos
Neoplasias Renais , Tumor de Wilms , Becaplermina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Criança , Transição Epitelial-Mesenquimal , Glucose , Glicólise , Humanos , Ácido Láctico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tumor de Wilms/metabolismo
5.
Biochem Cell Biol ; 100(1): 75-84, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678088

RESUMO

Osteosarcoma is a malignant tumor abundant in vascular tissue, and its rich blood supply may have a significant impact on its metabolic characteristics. PDGFRß is a membrane receptor highly expressed in osteosarcoma cells and vascular wall cells, and its effect on osteosarcoma metabolism needs to be further studied. In this study, we discussed the effect and mechanism of action of PDGFRß on glucose metabolism in human osteosarcoma (HOS) cells. GSEA, Pearson's correlation test, and PPI correlation analysis indicated positive regulation of PDGFRß on aerobic glycolysis in osteosarcoma. The results of qPCR and western blot further confirmed the prediction of bioinformatics. Glucose metabolism experiments proved that PDGF/PDGFRß could effectively promote aerobic glycolysis in osteosarcoma cells. In addition, the mitochondrial membrane potential (ΔΨm) experiment proved that the metabolic change triggered by PDGFRß was not caused by mitochondrial damage. The PI3K pathway inhibitor LY294002, MEK pathway inhibitor U0126, or Warburg effect inhibitor DCA was used to perform western blot and glucose metabolism experiments, and the results showed that PDGFBB/PDGFRß mainly activated the PI3K/AKT/mTOR/c-Myc pathway to promote aerobic glycolysis in osteosarcoma HOS cells. The newly elucidated role of PDGFRß provides a novel metabolic therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glucose , Glicólise , Humanos , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Gene ; 689: 11-17, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30553996

RESUMO

Most cancer cells predominantly produce their energy through a high rate of glycolysis in the presence of abundant oxygen. Glycolysis has become a target of anticancer strategies. Previous researches showed that glucose transporter 1 (GLUT1) inhibitor is effective as anticancer agents. This study assessed the effects of the selective GLUT1 inhibitor WZB117 on regulation of neuroblastoma (NB) cell line SH-SY5Y viability, cell cycle and glycolysis in vitro. SH-SY5Y cells were grown and treated with WZB117 for up to 72 h and then subjected to cell viability, qRT-PCR, Western blot and flow cytometry analysis. Level of ATP and LDH was also analyzed. The result showed that WZB117 treatment reduced tumor cells viability, downregulated level of GLUT1 protein. Moreover, WZB117 treatment arrested tumor cells at the G0-G1 phase of the cell cycle, induced tumor cells to undergo necrosis instead of apoptosis. In addition, WZB117 treatment downregulated the levels of intracellular ATP, LDH and glycolytic enzymes. Thus, WZB117-induced GLUT1 inhibition suppressed tumor cell growth, induced cell cycle arrest and reduced glycolysis metabolites in NB cells in vitro. This study suggested that GLUT1 can be used as a potential therapeutic target for NB.


Assuntos
Transportador de Glucose Tipo 1/antagonistas & inibidores , Hidroxibenzoatos/farmacologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Neuroblastoma/genética
7.
Asian Pac J Cancer Prev ; 15(6): 2447-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24761845

RESUMO

Human papillomavirus (HPV) is the primary etiologic agent of cervical cancer. Consideration of safety and non human leukocyte antigen restriction, protein vaccine has become the most likely form of HPV therapeutic vaccine, although none have so far been reported as effective. Since tumor cells consistently express the two proteins E6 and E7, most therapeutic vaccines target one or both of them. In this study, we fabricated DC vaccines by transducing replication-defective recombinant adenoviruses expressing E6/E7 fusion gene of HPV-16, to investigate the lethal effects of specific cytotoxic T lymphocytes (CTL) against CaSki cells in vitro. Mouse immature dendritic cells (DC) were generated from bone marrow, and transfected with pAd-E6/E7 to prepare a DC vaccine and to induce specific CTL. The surface expression of CD40, CD68, MHC II and CD11c was assessed by flow cytometry (FCM), and the lethal effects of CTL against CaSki cells were determined by DAPI, FCM and CCK-8 methods. Immature mouse DC was successfully transfected by pAd-E6/E7 in vitro, and the transfecting efficiency was 40%-50%. A DC vaccine was successfully prepared and was used to induce specific CTL. Experimental results showed that the percentage of apoptosis and killing rate of CaSki cells were significantly increased by coculturing with the specific CTL (p <0.05). These results illustrated that a DC vaccine modified by HPV-16 E6/E7 gene can induce apoptosis of CaSki cells by inducing CTL, which may be used as a new strategy for biological treatment of cervical cancer.


Assuntos
Citotoxicidade Imunológica/imunologia , Células Dendríticas/imunologia , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Proteínas Repressoras/genética , Neoplasias do Colo do Útero/prevenção & controle , Adenoviridae/genética , Animais , Apoptose , Células Dendríticas/virologia , Feminino , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Papillomavirus Humano 16/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia
8.
Asian Pac J Cancer Prev ; 15(2): 769-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24568493

RESUMO

Fangchinoline (Fan) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The effects of Fan on cell growth and proliferation in breast cancer cells remain to be elucidated. Here, we show that Fan inhibited cell proliferation in the MDA-MB-231 breast cancer cell line through suppression of the AKT/Gsk- 3beta/cyclin D1 signaling pathway. Furthermore, Fan induced apoptosis by increasing the expression of Bax (relative to Bcl-2), active caspase 3 and cytochrome-c. Fan significantly inhibited cell proliferation of MDA- MB-231 cells in a concentration and time dependent manner as determined by MTT assay. Flow cytometry analysis demonstrated that Fan treatment of MDA-MB-231 cells resulted in cell cycle arrest at the G1 phase, which correlated with apparent downregulation of both mRNA and protein levels of both PCNA and cyclin D1. Further analysis demonstrated that Fan decreased the phosphorylation of AKT and GSK-3beta. In addition, Fan up-regulated active caspase3, cytochrome-c protein levels and the ratio of Bax/Bcl-2, accompanied by apoptosis. Taken together, these results suggest that Fan is a potential natural product for the treatment of breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclina D1/genética , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
9.
Genet Mol Biol ; 32(4): 697-703, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21637439

RESUMO

The oncogene Bmi-1 is a member of the Polycomb group gene family. Its expression is found to be greatly increased in a number of malignant tumors including breast cancer. This could suggest Bmi-1 as a potent therapeutic target. In this study, RNAi was introduced to down-regulate the expression of Bmi-1 in a highly malignant breast adenocarcinoma cell line, MCF-7. A thorough study of the biological behavior and chemosensitivity changes of the MCF-7 cells was carried out in context to the therapeutic potential of Bmi-1. The results obtained indicated that siRNA targeting of Bmi-1 could lead to an efficient and specific inhibition of endogenous Bmi-1 activity. The mRNA and protein expression of Bmi-1 were determined by RT-PCR and Western blot, respectively. Furthermore, silencing of Bmi-1 resulted in a drastic inhibition of the growth of MCF-7 cells as well as G(1) /S phase transition. The number of target cells was found to increase in phase G (0) /G (1) and decrease in the S phase, but no increase in the basal level of apoptosis was noticed. On the other hand, a reduction in the expression of cyclin D1 and an increase in the expression of p21 were also noticed. Silencing of Bmi-1 made the MCF-7 cells more sensitive to the chemotherapeutic agent doxorubicin and induced a significantly higher percentage of apoptotic cells. Here, we report on a study regarding the RNAi-mediated silencing of the Bmi-1 gene in breast cancer.

10.
Genet. mol. biol ; 32(4): 697-703, 2009. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-531805

RESUMO

The oncogene Bmi-1 is a member of the Polycomb group gene family. Its expression is found to be greatly increased in a number of malignant tumors including breast cancer. This could suggest Bmi-1 as a potent therapeutic target. In this study, RNAi was introduced to down-regulate the expression of Bmi-1 in a highly malignant breast adenocarcinoma cell line, MCF-7. A thorough study of the biological behavior and chemosensitivity changes of the MCF-7 cells was carried out in context to the therapeutic potential of Bmi-1. The results obtained indicated that siRNA targeting of Bmi-1 could lead to an efficient and specific inhibition of endogenous Bmi-1 activity. The mRNA and protein expression of Bmi-1 were determined by RT-PCR and Western blot, respectively. Furthermore, silencing of Bmi-1 resulted in a drastic inhibition of the growth of MCF-7 cells as well as G1/S phase transition. The number of target cells was found to increase in phase G0/G1 and decrease in the S phase, but no increase in the basal level of apoptosis was noticed. On the other hand, a reduction in the expression of cyclin D1 and an increase in the expression of p21 were also noticed. Silencing of Bmi-1 made the MCF-7 cells more sensitive to the chemotherapeutic agent doxorubicin and induced a significantly higher percentage of apoptotic cells. Here, we report on a study regarding the RNAi-mediated silencing of the Bmi-1 gene in breast cancer.

11.
Int J Biol Macromol ; 37(5): 278-82, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16343610

RESUMO

A purified polysaccharide ACDP-2 was isolated from water extract of the stems of Cistanche deserticola. Chemical and spectroscopic analyses indicated that ACDP-2 is a highly branched arabinogalactan polymer that composes of linked d-galactopyranose and d-glucopyranose, which contains predominantly a branching point at the 6-carbon. The branched side-chains compose of terminal-, 1,5-, and 1,3,5-linked arabinofuranosyl residues. ACDP-2 showed an effect in stimulating the immune response, which when applied onto the cultured mouse lymphocytes induced the cell proliferation in a dose-dependent manner.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cistanche , Galactanos/farmacologia , Linfócitos/efeitos dos fármacos , Mitógenos/farmacologia , Animais , Células Cultivadas , Galactanos/química , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitógenos/química , Caules de Planta
12.
Pharmazie ; 59(10): 815-6, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15544066

RESUMO

A new mannoglucan from Cistanche deserticola from China is characterized. The compound is responsible for a mild stimulation of mitogen-induced T and B lymphocyte proliferation.


Assuntos
Cistanche/química , Polissacarídeos/química , Sequência de Carboidratos , Cromatografia DEAE-Celulose , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Metilação , Dados de Sequência Molecular , Rotação Ocular , Caules de Planta/química
13.
Beijing Da Xue Xue Bao Yi Xue Ban ; 36(1): 24-6, 2004 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-14970882

RESUMO

OBJECTIVE: To study the chemical structure of polysaccharide CDP-4 isolated from Cistanche deserticola Y.C.Ma. METHODS: The chemical properties of CDP-4 were determined by using chemical method and spectrocospic method. RESULTS: CDP-4 was composed of glucosyl group, with the ratio 1,4-linkage glcp:1,6-linkage glcp=3:1,and its mean molecular weight 1.4 x 10(4). By means of methlylation analysis, complete acid hydrolysis analysis, NMR spectrum, the linkages and sequence information of CDP-4 were obtained. CONCLUSION: CDP-4 is a new linear glucan.


Assuntos
Cistanche/química , Polissacarídeos/química , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...