Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38691444

RESUMO

Plant-associated microbiomes play important roles in plant health and productivity. However, despite fruits being directly linked to plant productivity, little is known about the microbiomes of fruits and their potential association with fruit health. Here, by integrating 16S rRNA gene, ITS high-throughput sequencing data, and microbiological culturable approaches, we reported that roots and fruits (pods) of peanut, a typical plant that bears fruits underground, recruit different bacterial and fungal communities independently of cropping conditions and that the incidence of pod disease under monocropping conditions is attributed to the depletion of Bacillus genus and enrichment of Aspergillus genus in geocarposphere. On this basis, we constructed a synthetic community (SynCom) consisting of three Bacillus strains from geocarposphere soil under rotation conditions with high culturable abundance. Comparative transcriptome, microbiome profiling, and plant phytohormone signaling analysis reveal that the SynCom exhibited more effective Aspergillus growth inhibition and pod disease control than individual strain, which was underpinned by a combination of molecular mechanisms related to fungal cell proliferation interference, mycotoxins biosynthesis impairment, and jasmonic acid-mediated plant immunity activation. Overall, our results reveal the filter effect of plant organs on the microbiome and that depletion of key protective microbial community promotes the fruit disease incidence.


Assuntos
Arachis , Frutas , Microbiota , Doenças das Plantas , Raízes de Plantas , RNA Ribossômico 16S , Microbiologia do Solo , Frutas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Arachis/microbiologia , Aspergillus/genética , Aspergillus/isolamento & purificação , Bacillus/genética , Bacillus/isolamento & purificação , Reguladores de Crescimento de Plantas/metabolismo , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação
2.
Microbiol Res ; 277: 127491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769598

RESUMO

Fungal endophytes play critical roles in helping plants adapt to adverse environmental conditions. The root endophyte Phomopsis liquidambaris can promote the growth and disease control of peanut plants grown under monocropping systems; however, how such beneficial traits are produced is largely unknown. Since the plant endophytic microbiome is directly linked to plant growth and health, and the composition of which has been found to be potentially influenced by microbial inoculants, this study aims to clarify the roles of root endophytic bacterial communities in P. liquidambaris-mediated plant fitness enhancement under monocropping conditions. Here, we found that P. liquidambaris inoculation induced significant changes in the root bacterial community: enriching some beneficial bacteria such as Bradyrhizobium sp. and Streptomyces sp. in the roots, and improving the core microbial-based interaction network. Next, we assembled and simplified a synthetic community (SynII) based on P. liquidambaris-derived key taxa, including Bacillus sp. HB1, Bacillus sp. HB9, Burkholderia sp. MB7, Pseudomonas sp. MB2, Streptomyces sp. MB6, and Bradyrhizobium sp. MB15. Furthermore, the application of the simplified synthetic community suppressed root rot caused by Fusarium oxysporum, promoted plant growth, and increased peanut yields under continuous monocropping conditions. The resistance of synII to F. oxysporum is related to the increased activity of defense enzymes. In addition, synII application significantly increased shoot and root biomass, and yield by 35.56%, 81.19%, and 34.31%, respectively. Collectively, our results suggest that the reshaping of root core microbiota plays an important role in the probiotic-mediated adaptability of plants under adverse environments.


Assuntos
Bacillus , Microbiota , Endófitos , Resistência à Doença , Arachis/microbiologia , Bactérias/genética , Raízes de Plantas/microbiologia
3.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299154

RESUMO

Oplopanax elatus is an endangered medicinal plant, and adventitious root (AR) culture is an effective way to obtain its raw materials. Yeast extract (YE) is a lower-price elicitor and can efficiently promote metabolite synthesis. In this study, the bioreactor-cultured O. elatus ARs were treated with YE in a suspension culture system to investigate the elicitation effect of YE on flavonoid accumulation, serving for further industrial production. Among YE concentrations (25-250 mg/L), 100 mg/L YE was the most suitable for increasing the flavonoid accumulation. The ARs with various ages (35-, 40-, and 45-day-old) responded differently to YE stimulation, where the highest flavonoid accumulation was found when 35-day-old ARs were treated with 100 mg/L YE. After YE treatment, the flavonoid content increased, peaked at 4 days, and then decreased. By comparison, the flavonoid content and antioxidant activities in the YE group were obviously higher than those in the control. Subsequently, the flavonoids of ARs were extracted by flash extraction, where the optimized extraction process was: 63% ethanol, 69 s of extraction time, and a 57 mL/g liquid-material ratio. The findings provide a reference for the further industrial production of flavonoid-enriched O. elatus ARs, and the cultured ARs have potential application for the future production of products.

4.
Clin Cosmet Investig Dermatol ; 16: 751-767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37016603

RESUMO

Objective: Treatment of burn wound healing involves infection, nutrition, psychology and rehabilitation, and proper nutritional support can promote wound healing, enhance immune function and reduce the incidence of complications. This study aimed to investigate the effects of feed containing yak meat on scalded rats' body condition and wound healing. Methods: Adopting a two-factor factorial design, the growth performance, food intake, body weight, and Lee's index of rats were measured. The wound conditions of scalded rats with different feeds (basic, basic + yak meat, and basic + yellow beef) were observed at different periods, and their wounds' hematoxylin and eosin (H&E) staining states were detected. The proliferating cell nuclear antigen (PCNA)-positive cells and apoptosis were analyzed to evaluate the effects of feed on the wound healing of scalded rats. Results: The feed intake was the highest in the yellow beef feed group and the lowest in the yak meat feed group. The body weight was the highest in the yak meat feed group and the lowest in the yellow beef feed group. Furthermore, 45 days after scalding, the obesity index in the yak beef feed group was the closest to that of the rats before scalding. The wound recovery of the rats in the yak meat feed group was the best at 30 days, and the H&E staining results also proved that the recovery effect of the scalded rats in the yak meat feed group was better than other two groups. According to the results of PCNA and apoptosis, the yak meat feed group had lower positive cell rate and faster wound healing. Conclusion: The rats in the yak meat feed group recovered better than those in the other groups, and the yak beef feed had the best effect on the wound healing of the scalded rats.

5.
J Biotechnol ; 368: 1-11, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37075954

RESUMO

Oplopanax elatus is a valuable medicinal plant, but its plant resource is lacking. Adventitious root (AR) culture of O. elatus is an effective way for the production of plant materials. Salicylic acid (SA) exerts enhancement effect on metabolite synthesis in some plant cell/organ culture systems. To clarify the elicitation effect of SA on fed-batch cultured O. elatus ARs, this study investigated the effects of SA concentration, and elicitation time and duration. Results showed that flavonoid and phenolic contents, and antioxidant enzyme activity obviously increased when the fed-batch cultured ARs were treated with 100 µM SA for 4 days starting on day 35. Under this elicitation condition, total flavonoid and phenolic contents reached 387 rutin mg/g DW and 128 gallic acid mg/g DW, respectively, which were significantly (p < 0.05) higher than those in the SA-untreated control. In addition, DPPH scavenging and ABTS+ scavenging rates, and Fe2+ chelating rate also greatly increased after SA treatment, and their EC50 values were 0.0117, 0.61, and 3.34 mg/L, respectively, indicating the high antioxidant activity. The findings of the present study revealed that SA could be used as an elicitor to improve the flavonoid and phenolic production in fed-batch O. elatus AR culture.


Assuntos
Flavonoides , Oplopanax , Oplopanax/química , Oplopanax/metabolismo , Ácido Salicílico/farmacologia , Antioxidantes/metabolismo , Fenóis/química
6.
Front Pharmacol ; 13: 761618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586046

RESUMO

O. elatus Nakai is a traditional medicine that has been confirmed to exert effective antioxidant and anti-inflammatory functions, and is used for the treatment of different disorders. However, its potential beneficial effects on drug induced hepatotoxicity and relevant molecular mechanisms remain unclear. This study investigated the protective effect and further elucidated the mechanisms of action of O. elatus on liver protection. O. elatus chlorogenic acids-enriched fraction (OEB), which included chlorogenic acid and isochlorogenic acid A, were identified by HPLC-MS/MS. OEB was administrated orally daily for seven consecutive days, followed by a single intraperitoneal injection of an overdose of APAP after the final OEB administration. The effects of OEB on immune cells in mice liver were analyzed using flow cytometry. APAP metabolite content in serum was detected using HPLC-MS/MS in order to investigate whether OEB affects CYP450 activities. The intestinal content samples were processed for 16 s microbiota sequencing. Results demonstrated that OEB decreased alanine aminotransferase, aspartate aminotransferase contents, affected the metabolism of APAP, and decreased the concentrates of APAP, APAP-CYS and APAP-NAC by inhibiting CYP2E1 and CYP3A11 activity. Furthermore, OEB pretreatment regulated lipid metabolism by affecting the peroxisome proliferator-activated receptors (PPAR) signaling pathway in mice and also increased the abundance of Akkermansia and Parabacteroides. This study indicated that OEB is a potential drug candidate for treating hepatotoxicity because of its ability to affect drug metabolism and regulate lipid metabolism.

7.
Animal Model Exp Med ; 5(3): 207-216, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35333455

RESUMO

Pulmonary hypertension (PH) is clinically divided into 5 major types, characterized by elevation in pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), finally leading to right heart failure and death. The pathogenesis of this arteriopathy remains unclear, leaving it impossible to target pulmonary vascular remodeling and reverse the deterioration of right ventricular (RV) function. Different animal models have been designed to reflect the complex mechanistic origins and pathology of PH, roughly divided into 4 categories according to the modeling methods: non-invasive models in vivo, invasive models in vivo, gene editing models, and multi-means joint modeling. Though each model shares some molecular and pathological changes with different classes of human PH, in most cases the molecular etiology of human PH is poorly known. The appropriate use of classic and novel PH animal models is essential for the hunt of molecular targets to reverse severe phenotypes.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/complicações , Hipertensão Pulmonar/etiologia , Resistência Vascular , Função Ventricular Direita
8.
Ann Palliat Med ; 10(1): 312-322, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545766

RESUMO

BACKGROUND: With the development of radiological technologies, radiotherapy has been gradually widely used in the clinic to intracranial tumours and become standardised. However, the related central nervous system disorders are still the most obvious complications after radiotherapy. This study aims to quantify the effectiveness of anlotinib, a small molecule inhibitor of multiple receptor tyrosine kinases, in mitigating acute phase of radiation-induced brain injury (RBI) in a mouse model. METHODS: The onset and progression of RBI were investigated in vivo. All mice, (except for the sham group) were irradiated at a single-fraction of 20 Gy and treated with different doses of anlotinib (0, 0.2 and 0.8 mg/kg, respectively). The expression levels of glial fibrillary acidic protein (GFAP), hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and phosphorylated vascular endothelial growth factor receptor-2 (p-VEGFR2) were assessed by western blot. Histological changes were identified by luxol fast blue (LFB) staining. RESULTS: The expression levels of GFAP, HIF-1α, and VEGF were downregulated following treatment with anlotinib. However, anlotinib failed to inhibit the development of demyelination. Cerebral edema [as measured by brain water content (BWC)] was also mitigated following treatment with anlotinib. CONCLUSIONS: In summary, treatment with anlotinib significantly mitigated the adverse effects of acute RBI in a dose-dependent manner by downregulating the activation of astrocytes, improving brain hypoxia, and alleviating cerebral edema.


Assuntos
Lesões Encefálicas , Quinolinas , Animais , Encéfalo/metabolismo , Indóis , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Chin Herb Med ; 13(2): 228-234, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36117511

RESUMO

Objective: In order to elucidate the biological activity of the co-cultured adventitious roots (ARs) of Echinacea pallida and Echinacea purpurea and provide theoretical basis for its application, and the anti-inflammatory activities and potential mechanisms of co-cultured ARs were studied. Methods: The experimental materials were obtained by bioreactor co-culture technology and used in the activity research. In this study, mouse macrophages induced by lipopolysaccharide (LPS) were used as in vitro model. Different concentrations of AR extract (50-400 g/mL) were used to treat cells. The expression of pro-inflammatory cytokines was determined using enzyme linked immunosorbent assay. The inducible nitric oxide synthase and cyclooxygenase-2 expression, mitogen-activated protein kinase (MAPK) phosphorylation, and the inhibitor of nuclear factor-kappa B-α levels were determined by the Western blot analysis. Results: In the co-cultured ARs, total flavonoids and total caffeic acid were determined, and the contents of both bioactive compounds were significantly higher than those ARs from the single-species culture. Compared with the control group, the large amount of pro-inflammatory mediators was released after LPS stimulation. However, in the extract groups with different concentrations (25, 50, and 100 g/mL), the production of these pro-inflammatory mediators was inhibited in a dose-dependent manner. Furthermore, the levels of phosphorylation of MAPK proteins, including p-p38, p-c-Jun N-terminal kinase, and p-extracellular regulated protein kinases were significantly (P < 0.05) decreased in the extract groups, revealing that the AR extract probably involved in regulating the MAPK signaling pathway. Conclusion: Collectively, our findings suggested that the co-cultured ARs of E. pallida and E. purpurea can inhibit production of pro-inflammatory mediators in mouse peritoneal macrophages and possess the anti-inflammatory effect by regulating MAPK signaling pathways.

10.
Stem Cell Res ; 49: 102088, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33221675

RESUMO

Our previous study found that mutations in the PTGIS gene contributed high susceptibility to pulmonary arterial hypertension (PAH). We have generated disease-specific induced pluripotent stem cell (iPSC) lines from a PAH patient carrying the heterozygous c.1339 G > A mutation in PTGIS gene. The generated iPSC lines can be differentiated into endothelial cells to investigate the pathogenesis of PAH associated with PTGIS gene, which could provide valuable resources for personalized medicine.


Assuntos
Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Células-Tronco Pluripotentes Induzidas , Hipertensão Arterial Pulmonar , Células Endoteliais , Heterozigoto , Humanos , Mutação , Hipertensão Arterial Pulmonar/genética
11.
Nanoscale ; 12(45): 23150-23158, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33191413

RESUMO

With the advent of wearable microelectronic devices in the interdisciplinary bio-electronics research field, synaptic devices with capability of neuromorphic computing are attracting more and more attention as the building blocks for the next generation computing structure. Conventional flash-like synaptic transistors are built on rigid solid-state substrates, and the inorganic materials and the high-temperature processing steps have severely limited their applications in various flexible electronic devices and systems. Here, flexible organic flash-like synaptic devices have been fabricated on a flexible substrate with the organic C8-BTBT as the conducting channel. The device exhibits a memory window greater than 20 V and excellent synaptic functions including short/long-term synaptic plasticity and spike-timing-dependent plasticity. In addition, even under the bending condition (7 mm bending radius), the transistor can still stably achieve a variety of synaptic functions. This work shows that low-temperature processing technology with the integration of organic materials can pave a promising pathway for the realization of flexible synaptic systems and the future development of wearable electronic devices.


Assuntos
Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Eletrônica , Plasticidade Neuronal
12.
Nanoscale Res Lett ; 14(1): 360, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792627

RESUMO

Hybrid heterojunctions based on two-dimensional (2D) and conventional three-dimensional (3D) materials provide a promising way toward nanoelectronic devices with engineered features. In this work, we investigated the band alignment of a mixed-dimensional heterojunction composed of transferred MoS2 on ß-Ga2O3([Formula: see text]01) with and without nitridation. The conduction and valence band offsets for unnitrided 2D-MoS2/3D-ß-Ga2O3 heterojunction were determined to be respectively 0.43 ± 0.1 and 2.87 ± 0.1 eV. For the nitrided heterojunction, the conduction and valence band offsets were deduced to 0.68 ± 0.1 and 2.62 ± 0.1 eV, respectively. The modified band alignment could result from the dipole formed by charge transfer across the heterojunction interface. The effect of nitridation on the band alignments between group III oxides and transition metal dichalcogenides will supply feasible technical routes for designing their heterojunction-based electronic and optoelectronic devices.

13.
Talanta ; 204: 344-352, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357303

RESUMO

Antibiotics are one of the emerging contaminants in water, which have a great impact on ecosystems and human health. It has been challenging to simultaneously realize low-cost, rapid, highly sensitive and selective detection of antibiotics with conventional methods. Here, we report luminescent chemosensors for detecting antibiotics in water, based on metal-organic framework (MOF), i.e., zeolitic imidazolate framework-8 (ZIF-8), loaded with rhodamine B (RhB) and fluorescein disodium salt (FSS) dyes. Compared with ZIF-8, the fluorescence signals of RhB@ZIF-8 and FSS@ZIF-8 were significantly improved and presented ultrahigh sensitivity to nitrofurans (NFAs) and tetracyclines (TCs) with fluorescence quenching and fluorescence enhancement in water, respectively. The unique structures and properties of RhB@ZIF-8 and FSS@ZIF-8 lead to outstanding sensitivities in antibiotic detection. For instance, the RhB@ZIF-8 sensor shows the lower limit of detection (LOD) of 0.26 µM to nitrofurantoin (NFT), 0.47 µM to nitrofurazone (NFZ), 0.11 µM to tetracycline (TC), and 0.14 µM to oxytetracycline (OTC); while the FSS@ZIF-8 sensor shows the LOD of 0.31 µM to NFT, 0.35 µM to NFZ, 0.17 µM to TC, and 0.16 µM to OTC. In addition, NFT and TC were also successfully detected by FSS@ZIF-8 in water from real water environment. The results indicate that dye@MOF-based luminescent composites are favorable for antibiotic detection, presenting great potentials in water quality monitoring.

14.
Sci Rep ; 9(1): 2935, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814540

RESUMO

Tissue culture is very important for identifying the gene function of Camellia sinensis (L.) and exploiting novel germplasm through transgenic technology. Regeneration system of tea plant has been explored but not been well established since the molecular mechanism of tea plant regeneration is not clear yet. In this study, transcriptomic analysis was performed in the initial explants of tea plant and their dedifferentiated and redifferentiated tissues. A total of 93,607 unigenes were obtained through de novo assembly, and 7,193 differentially expressed genes (DEGs) were screened out from the 42,417 annotated unigenes. Much more DEGs were observed during phase transition rather than at growth stages of callus. Our KOG and KEGG analysis, and qPCR results confirmed that phase transition of tea plant was closely related to the mechanism that regulate expression of genes encoding the auxin- and cytokinin-responsive proteins, transcription factor MYB15 and ethylene-responsive transcription factor ERF RAP2-12. These findings provide a reliable foundation for elucidating the mechanism of the phase transition and may help to optimize the regeneration system by regulating the gene expression pattern.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Regeneração/genética , Fatores de Transcrição/genética , Camellia sinensis/citologia , Camellia sinensis/genética , Citocininas/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
15.
J Microbiol Biotechnol ; 28(7): 1147-1155, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29926702

RESUMO

The degradation efficiency and catabolism pathways of the different methylxanthines (MXs) in isolated caffeine-tolerant strain Pseudomonas putida CT25 were comprehensively studied. The results showed that the degradation efficiency of various MXs varied with the number and position of the methyl groups on the molecule (i.e., xanthine > 7-methylxanthine ≈ theobromine > caffeine > theophylline > 1-methylxanthine). Multiple MX catabolism pathways coexisted in strain CT25, and a different pathway would be triggered by various MXs. Demethylation dominated in the degradation of N-7-methylated MXs (such as 7-methylxanthine, theobromine, and caffeine), where C-8 oxidation was the major pathway in the catabolism of 1-methylxanthine, whereas demethylation and C-8 oxidation are likely both involved in the degradation of theophylline. Enzymes responsible for MX degradation were located inside the cell. Both cell culture and cell-free enzyme assays revealed that N-1 demethylation might be a rate-limiting step for the catabolism of the MXs. Surprisingly, accumulation of uric acid was observed in a cell-free reaction system, which might be attributed to the lack of activity of uricase, a cytochrome c-coupled membrane integral enzyme.


Assuntos
Cafeína/metabolismo , Redes e Vias Metabólicas , Pseudomonas putida/isolamento & purificação , Pseudomonas putida/metabolismo , Microbiologia do Solo , Xantinas/metabolismo , Biodegradação Ambiental , Cafeína/química , Tolerância a Medicamentos , Jardins , Pseudomonas putida/enzimologia , Pseudomonas putida/crescimento & desenvolvimento , Solo , Especificidade por Substrato , Chá/microbiologia , Teobromina/química , Teobromina/metabolismo , Teofilina/química , Teofilina/metabolismo , Ácido Úrico/metabolismo , Xantina/química , Xantina/metabolismo , Xantinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...