Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Cancer Discov ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767413

RESUMO

High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler CHD2 regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons.

2.
BMC Infect Dis ; 24(1): 503, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769522

RESUMO

BACKGROUND: Metagenomic next-generation sequencing (mNGS) is an emerging technique for the clinical diagnosis of infectious disease that has rarely been used for the diagnosis of ascites infection in patients with cirrhosis. This study compared mNGS detection with conventional culture methods for the on etiological diagnosis of cirrhotic ascites and evaluated the clinical effect of mNGS. METHODS: A total of 109 patients with ascites due to cirrhosis were included in the study. We compared mNGS with conventional culture detection by analyzing the diagnostic results, pathogen species and clinical effects. The influence of mNGS on the diagnosis and management of ascites infection in patients with cirrhosis was also evaluated. RESULTS: Ascites cases were classified into three types: spontaneous bacterial peritonitis (SBP) (16/109, 14.7%), bacterascites (21/109, 19.3%) and sterile ascites (72/109, 66.1%). In addition, 109 patients were assigned to the ascites mNGS-positive group (80/109, 73.4%) or ascites mNGS-negative group (29/109, 26.6%). The percentage of positive mNGS results was significantly greater than that of traditional methods (73.4% vs. 28.4%, P < 0.001). mNGS detected 43 strains of bacteria, 9 strains of fungi and 8 strains of viruses. Fourteen bacterial strains and 3 fungal strains were detected via culture methods. Mycobacteria, viruses, and pneumocystis were detected only by the mNGS method. The mNGS assay produced a greater polymicrobial infection rate than the culture method (55% vs. 16%). Considering the polymorphonuclear neutrophil (PMN) counts, the overall percentage of pathogens detected by the two methods was comparable, with 87.5% (14/16) in the PMN ≥ 250/mm3 group and 72.0% (67/93) in the PMN < 250/mm3 group (P > 0.05). Based on the ascites PMN counts combined with the mNGS assay, 72 patients (66.1%) were diagnosed with ascitic fluid infection (AFI) (including SBP and bacterascites), whereas based on the ascites PMN counts combined with the culture assay, 37 patients (33.9%) were diagnosed with AFI (P < 0.05). In 60 (55.0%) patients, the mNGS assay produced positive clinical effects; 40 (85.7%) patients had their treatment regimen adjusted, and 48 patients were improved. The coincidence rate of the mNGS results and clinical findings was 75.0% (60/80). CONCLUSIONS: Compared with conventional culture methods, mNGS can improve the detection rate of ascites pathogens, including bacteria, viruses, and fungi, and has significant advantages in the diagnosis of rare pathogens and pathogens that are difficult to culture; moreover, mNGS may be an effective method for improving the diagnosis of ascites infection in patients with cirrhosis, guiding early antibiotic therapy, and for reducing complications related to abdominal infection. In addition, explaining mNGS results will be challenging, especially for guiding the treatment of infectious diseases.


Assuntos
Ascite , Sequenciamento de Nucleotídeos em Larga Escala , Cirrose Hepática , Metagenômica , Peritonite , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/microbiologia , Masculino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Pessoa de Meia-Idade , Ascite/microbiologia , Metagenômica/métodos , Peritonite/microbiologia , Peritonite/diagnóstico , Idoso , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Adulto , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Líquido Ascítico/microbiologia
3.
Foods ; 13(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672864

RESUMO

Sanghuangporus sanghuang is a rare fungus growing on mulberry trees that has immense medicinal value. This study aimed to optimize the liquid-fermentation-media formulation and culture conditions for large-scale culturing of S. sanghuang by performing one-way testing and response surface methodology. The antioxidant and anticancer activities of the extracellular polysaccharides from S. sanghuang were also analyzed. The optimal formulation and growth conditions for S. sanghuang were as follows: glucose, 30.2 ± 0.37 g/L; yeast extract, 14.60 ± 0.05 g/L; dandelion powder, 1.24 ± 0.01 g/L; shaker speed, 150 r/min; and temperature, 25 °C. We obtained 13.99 ± 0.42 g/L of mycelium biomass by culturing S. sanghuang for 15 days with the optimized formulation. This was 2-fold higher than the mycelial mass obtained with the sub-optimal formulation. The extracellular fungal polysaccharides showed significant antioxidant activity against ABTS and DPPH free radicals, and significantly reduced the in vitro growth and survival of several cancer cell lines. The anticancer activity of the extracellular fungal polysaccharides was significantly higher in the human glioma cells than in other cancer cell lines. In summary, this study optimized the liquid media formulation and conditions for the large-scale culturing of S. sanghuang. Furthermore, the extracellular polysaccharides from S. sanghuang showed significant antioxidant and anticancer activities.

4.
Sci Rep ; 14(1): 8773, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627532

RESUMO

Previous studies have primarily focused on the influence of temperature and precipitation on phenology. It is unclear if the easily ignored climate factors with drivers of vegetation growth can effect on vegetation phenology. In this research, we conducted an analysis of the start (SOS) and end (EOS) of the growing seasons in the northern region of China above 30°N from 1982 to 2014, focusing on two-season vegetation phenology. We examined the response of vegetation phenology of different vegetation types to preseason climatic factors, including relative humidity (RH), shortwave radiation (SR), maximum temperature (Tmax), and minimum temperature (Tmin). Our findings reveal that the optimal preseason influencing vegetation phenology length fell within the range of 0-60 days in most areas. Specifically, SOS exhibited a significant negative correlation with Tmax and Tmin in 44.15% and 42.25% of the areas, respectively, while EOS displayed a significant negative correlation with SR in 49.03% of the areas. Additionally, we identified that RH emerged as the dominant climatic factor influencing the phenology of savanna (SA), whereas temperature strongly controlled the SOS of deciduous needleleaf forest (DNF) and deciduous broadleaf forest (DBF). Meanwhile, the EOS of DNF was primarily influenced by Tmax. In conclusion, this study provides valuable insights into how various vegetation types adapt to climate change, offering a scientific basis for implementing effective vegetation adaptation measures.


Assuntos
Florestas , Desenvolvimento Vegetal , China , Mudança Climática , Estações do Ano , Temperatura , Ecossistema
5.
Phys Chem Chem Phys ; 26(11): 8623-8630, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426271

RESUMO

Using first-principles calculations and micro-magnetic simulations, we investigate the electronic structures, the effect of biaxial strain on the topological characteristics, magnetic anisotropy energy (MAE), Dzyaloshinskii-Moriya interaction (DMI) and spin textures in the Janus 1T phase VTeCl (1T-VTeCl) monolayer. Our results show that 1T-VTeCl has an intrinsic edge state, and a topological phase transition with a sizeable band gap is achieved by applying biaxial strain. Interestingly, the MAE can be switched from the in-plane to the off-plane with a compressive strain of -5%. Microscopically, the origin of MAE is mainly associated with the large spin-orbit coupling (SOC) from the heavy nonmagnetic Te atoms rather than that from the V atoms. Furthermore, the induced DMI (0.09 meV) can occur stabilizing magnetic merons without applying temperatures and magnetic fields. Then, the skyrmions, frustrated antiferromagnetism and vortex are induced after applying a suitable compressive strain. Our study provides compelling evidence that the 1T-VTeCl monolayer with topological properties holds great potential for application in spintronic devices, as well as information storage devices based on different magnetic phases achievable through strain engineering.

6.
Biomed Pharmacother ; 172: 116269, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367549

RESUMO

AGS-30, a new andrographolide derivative, showed significant anticancer and anti-angiogenic characteristics. However, its role in controlling macrophage polarization and tumor immune response is unknown. Thus, the main goals of this study are to investigate how AGS-30 regulates macrophage polarization and how it suppresses breast cancer metastasis. AGS-30 inhibited IL-4 and IL-13-induced RAW 264.7 and THP-1 macrophages into M2-like phenotype. However, AGS-30 did not affect the LPS and IFN-γ-induced polarization of M1-like macrophages. AGS-30 reduced the mRNA expressions of CD206, Arg-1, Fizz-1, Ym-1, VEGF, IL-10, MMP2, and MMP9 in M2-like macrophages in a concentration-dependent manner. In contrast, andrographolide treatment at 5 µM did not affect M1-like and M2-like macrophage polarization. The conditioned medium from M2-like macrophages increased 4T1 breast cancer cell migration and invasion, whereas AGS-30 inhibited these effects. In the 4T1 breast tumor xenograft mice, the tumor volume and weight were reduced without affecting body weight after receiving AGS-30. AGS-30 treatment also reduced lung and liver metastasis, with reduced STAT6, CD31, VEGF, and Ki67 protein expressions. Moreover, the tumors had considerably fewer M2-like macrophages and Arg-1 expression, but the proportion of M1-like macrophages and iNOS expression increased after AGS-30 treatment. Same results were found in the tail vein metastasis model. In conclusion, this study shows that AGS-30 inhibits breast cancer growth and metastasis, probably through inhibiting M2-like macrophage polarization. Our findings suggest that AGS-30 may be a potential immunotherapeutic alternative for metastatic breast cancer.


Assuntos
Neoplasias da Mama , Diterpenos , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Meios de Cultivo Condicionados , Diterpenos/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular
7.
Vet Med Int ; 2024: 5593703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318262

RESUMO

The elite bull plays an extremely important role in the genetic progression of the dairy cow population. The previous results indicated the potential positive relationship of large scrotal circumference (SC) with improved semen volume, concentration, and motility. In order to improve bull's semen quantity and quality by selection, it is necessary to estimate the genetic parameters of semen traits and their correlations with other conformation traits such as SC that could be used for an indirect selection. In this study, the genetic parameters of seven semen traits (n = 66,260) and nine conformation traits (n = 3,642) of Holstein bulls (n = 453) were estimated by using the bivariate repeatability animal model with the average information-restricted maximum likelihood (AI-REML) approach. The results showed that the estimated heritabilities of semen traits ranged from 0.06 (total number of motile sperm, TNMS) to 0.37 (percentage of abnormal sperm, PAS) and conformation traits ranged from 0.23 (pin width, PW) to 0.69 (hip height, HH). The highest genetic correlations were found between semen volume per ejaculation (SVPE), semen concentration per ejaculation (SCPE), total number of sperm (TNS), and TNMS traits that were 0.97, 0.98, 1.00, and 0.99, respectively. Phenotypic correlations between SC and SVPE, SCPE, TNS, and TNMS were 0.35, 0.35, 0.48, and 0.42, respectively. In summary, the moderate or high heritability of semen traits indicates that genetic improvement of semen quality by selection is feasible, where SC could be a useful trait for indirect selection or as correlated information to improve semen quantity and production in the practical bull breeding programs.

8.
Aging (Albany NY) ; 16(2): 1796-1807, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38244593

RESUMO

BACKGROUND: Circular RNAs (circRNAs) represent a subset of non-coding RNAs implicated in the regulation of diverse biological processes, including tumorigenesis. However, the expression and functional implications of circ0060467 in hepatocellular carcinoma (HCC) remain elusive. In this study, we aimed to elucidate the role of circ0060467 in modulating the progression of HCC. METHODS: Differentially expressed circRNAs in HCC tissues were identified through circRNA microarray assays. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays revealed the upregulation of circ0060467 in both HCC cell lines and tissues. Various assays were conducted to investigate the roles of circ0060467 in HCC progression. Additionally, RNA immunoprecipitation (RIP) assays and luciferase assays were carried out to assess the interactions between circ0060467, microRNA-6085 (miR-6085), apoptosis-inducing factor mitochondria-associated 2 (AIFM2), and glutathione peroxidase 4 (GPX4) in HCC. RESULTS: Microarray and qRT-PCR analyses demonstrated a marked elevation of circ0060467 in HCC tissues and cell lines. Knockdown of circ0060467 suppressed HCC cell proliferation. Luciferase reporter and RIP assays confirmed the binding of circ0060467, AIFM2, and GPX4 to miR-6805. Subsequent experiments revealed that circ0060467 competes with AIFM2 and GPX4, thereby inhibiting cancer cell ferroptosis by binding to miR-6085 and promoting hepatocellular carcinoma progression. CONCLUSIONS: Collectively, circ0060467 modulates the levels of AIFM2 and GPX4, crucial regulators of tumor cell ferroptosis, by acting as a sponge for miR-6085 in HCC. Thus, circ0060467 may represent a novel diagnostic marker and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Circular/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Luciferases/metabolismo , Linhagem Celular Tumoral
9.
MAGMA ; 37(2): 169-183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197908

RESUMO

OBJECTIVE: To assess the possible influence of third-order shim coils on the behavior of the gradient field and in gradient-magnet interactions at 7 T and above. MATERIALS AND METHODS: Gradient impulse response function measurements were performed at 5 sites spanning field strengths from 7 to 11.7 T, all of them sharing the same exact whole-body gradient coil design. Mechanical fixation and boundary conditions of the gradient coil were altered in several ways at one site to study the impact of mechanical coupling with the magnet on the field perturbations. Vibrations, power deposition in the He bath, and field dynamics were characterized at 11.7 T with the third-order shim coils connected and disconnected inside the Faraday cage. RESULTS: For the same whole-body gradient coil design, all measurements differed greatly based on the third-order shim coil configuration (connected or not). Vibrations and gradient transfer function peaks could be affected by a factor of 2 or more, depending on the resonances. Disconnecting the third-order shim coils at 11.7 T also suppressed almost completely power deposition peaks at some frequencies. DISCUSSION: Third-order shim coil configurations can have major impact in gradient-magnet interactions with consequences on potential hardware damage, magnet heating, and image quality going beyond EPI acquisitions.


Assuntos
Imageamento por Ressonância Magnética , Imãs , Imageamento por Ressonância Magnética/métodos
10.
Small ; 20(14): e2306666, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990400

RESUMO

Carrier-selective passivating contacts using transition metal oxides (TMOs) have attracted great attention for crystalline silicon (c-Si) heterojunction solar cells recently. Among them, tantalum oxide (Ta2O5) exhibits outstanding advantages, such as a wide bandgap, good surface passivation, and a small conduction band offset with c-Si, which is typically used as an electron-selective contact layer. Interestingly, it is first demonstrated that solution-processed Ta2O5 films exhibit a high hole selectivity, which blocks electrons and promotes hole transport simultaneously. Through the ozone pre-treatment of Ta2O5/p-Si interface and optimization of the film thickness (≈9 nm), the interfacial recombination is suppressed and the contact resistivity is reduced from 178.0 to 29.3 mΩ cm2. Moreover, the Sn4+ doping increases both the work function and oxygen vacancies of the film, contributing to the improved hole-selective contact performance. As a result, the photoelectric conversion efficiencies of Ta2O5/p-Si heterojunction solar cells are significantly improved from 14.84% to 18.47%, with a high thermal stability up to 300 °C. The work has provided a feasible strategy to explore new features of TMOs for carrier-selective contact applications, that is, bipolar carrier transport properties.

11.
Adv Sci (Weinh) ; 11(7): e2305582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064168

RESUMO

Formamidine lead triiodide (FAPbI3 ) perovskites have attracted increasing interest for photovoltaics attributed to the optimal bandgap, high thermal stability, and the record power conversion efficiency (PCE). However, the materials still face several key challenges, such as phase transition, lattice defects, and ion migration. Therefore, external ions (e.g., cesium ions (Cs+ )) are usually introduced to promote the crystallization and enhance the phase stability. Nevertheless, the doping of Cs+ into the A-site easily leads to lattice compressive strain and the formation of pinholes. Herein, trioctylphosphine oxide (TOPO) is introduced into the precursor to provide tensile strain outside the perovskite lattice through intermolecular forces. The special strain compensation strategy further improves the crystallization of perovskite and inhibits the ion migration. Moreover, the TOPO molecule significantly passivates grain boundaries and undercoordinated Pb2+ defects via the forming of P═O─Pb bond. As a result, the target solar cell devices with the synergistic effect of Cs+ and TOPO additives have achieved a significantly improved PCE of 22.71% and a high open-circuit voltage of 1.16 V (voltage deficit of 0.36 V), with superior stability under light exposure, heat, or humidity conditions.

13.
Front Pharmacol ; 14: 1257345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044944

RESUMO

Background and aims: Chinese herbal medicine (CHM) was used to prevent and treat coronavirus disease 2019 (COVID-19) in clinical practices. Many studies have demonstrated that the combination of CHM and Western medicine can be more effective in treating COVID-19 compared to Western medicine alone. However, evidence-based studies on the prevention in undiagnosed or suspected cases remain scarce. This systematic review and meta-analysis aimed to investigate the effectiveness of CHM in preventing recurrent, new, or suspected COVID-19 diseases. Methods: We conducted a comprehensive search using ten databases including articles published between December 2019 and September 2023. This search aimed to identify studies investigating the use of CHM to prevent COVID-19. Heterogeneity was assessed by a random-effects model. The relative risk (RR) and mean differences were calculated using 95% confidence intervals (CI). The modified Jadad Scale and the Newcastle-Ottawa Scale (NOS) were employed to evaluate the quality of randomized controlled trials and cohort studies, respectively. Results: Seventeen studies with a total of 47,351 patients were included. Results revealed that CHM significantly reduced the incidence of COVID-19 (RR = 0.24, 95% CI = 0.11-0.53, p = 0.0004), influenza (RR = 0.37, 95% CI = 0.18-0.76, p = 0.007), and severe pneumonia exacerbation rate (RR = 0.17, 95% CI = 0.05-0.64, p = 0.009) compared to non-treatment or conventional control group. Evidence evaluation indicated moderate quality evidence for COVID-19 incidence and serum complement components C3 and C4 in randomized controlled trials. For the incidence of influenza and severe pneumonia in RCTs as well as the ratio of CD4+/CD8+ lymphocytes, the evidence quality was low. The remaining outcomes including the disappearance rate of symptoms and adverse reactions were deemed to be of very low quality. Conclusion: CHM presents a promising therapeutic option for the prevention of COVID-19. However, additional high-quality clinical trials are needed to further strengthen evidential integrity.

14.
Therap Adv Gastroenterol ; 16: 17562848231210367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106983

RESUMO

Background: The incidence of inflammatory bowel disease (IBD) is rapidly increasing in China, a vast country with significant geographical differences. The socioeconomic status of Eastern China is significantly higher than that of Western China. Objectives: This study aimed to describe the geographical heterogeneity in the characteristics and management of patients with IBD in both Eastern and Western China. Design: This was a multicenter, cross-sectional study. Methods: Patients with IBD with ages ⩾18 years up to 18 January 2023 were included in the analysis from the Chinese database for IBD. Logistic regression was used to identify risk factors associated with surgeries among patients with IBD. Results: Among 8305 patients with IBD, the ratio of ulcerative colitis (UC) to Crohn's disease (CD) was 4.13 and 0.33 in Western and Eastern China, respectively. The median age at diagnosis of UC and CD was 40.69 and 28.58 years, respectively. There was a male predominance among patients with UC (54.3%) and CD (68.0%). The two regions exhibited a similar distribution of disease locations in UC. However, Western China had a higher proportion of L2 involvement (30.0% versus 19.1%) and more advanced disease behavior (B2 and B3) (48.8% versus 39.8%) than Eastern China. Patients with IBD in Western China received more 5-aminosalicylic acid and corticosteroids and fewer immunomodulators and biologicals. In terms of surgical risk, Eastern China [versus Western China, odds ratios (OR): 5.36, 95% confidence intervals (CI): 2.96-9.68] was associated with a higher risk of surgery in UC, while Western China (versus Eastern China, OR: 3.39, 95% CI: 2.37-4.86) was associated with a higher risk of surgery in CD. Conclusion: Geographical heterogeneity exists in the disease characteristics and management of IBD in Eastern and Western China. These findings have the potential to guide the formulation of location-specific strategies aimed at enhancing the long-term outcomes of patients with IBD.

15.
Materials (Basel) ; 16(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959470

RESUMO

Magnéli phase titanium oxides, also called titanium sub-oxides (TinO2n-1, 4 < n < 9), are a series of electrically conducting ceramic materials. The synthesis and applications of these materials have recently attracted tremendous attention because of their applications in a number of existing and emerging areas. Titanium sub-oxides are generally synthesized through the reduction of titanium dioxide using hydrogen, carbon, metals or metal hydrides as reduction agents. More recently, the synthesis of nanostructured titanium sub-oxides has been making progress through optimizing thermal reduction processes or using new titanium-containing precursors. Titanium sub-oxides have attractive properties such as electrical conductivity, corrosion resistance and optical properties. Titanium sub-oxides have played important roles in a number of areas such as conducting materials, fuel cells and organic degradation. Titanium sub-oxides also show promising applications in batteries, solar energy, coatings and electronic and optoelectronic devices. Titanium sub-oxides are expected to become more important materials in the future. In this review, the recent progress in the synthesis methods and applications of titanium sub-oxides in the existing and emerging areas are reviewed.

16.
Microsyst Nanoeng ; 9: 131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854722

RESUMO

Osmotic pressure is vital to many physiological activities, such as cell proliferation, wound healing and disease treatment. However, how cells interact with the extracellular matrix (ECM) when subjected to osmotic shock remains unclear. Here, we visualize the mechanical interactions between cells and the ECM during osmotic shock by quantifying the dynamic evolution of the cell traction force. We show that both hypertonic and hypotonic shocks induce continuous and large changes in cell traction force. Moreover, the traction force varies with cell volume: the traction force increases as cells shrink and decreases as cells swell. However, the direction of the traction force is independent of cell volume changes and is always toward the center of the cell-substrate interface. Furthermore, we reveal a mechanical mechanism in which the change in cortical tension caused by osmotic shock leads to the variation in traction force, which suggests a simple method for measuring changes in cell cortical tension. These findings provide new insights into the mechanical force response of cells to the external environment and may provide a deeper understanding of how the ECM regulates cell structure and function. Traction force exerted by cells under hypertonic and hypotonic shocks. Scale bar, 200 Pa. Color bar, Pa. The black arrows represent the tangential traction forces.

17.
J Clin Ultrasound ; 51(9): 1568-1578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883118

RESUMO

PURPOSE: This study aimed to develop and validate a deep learning model based on two-dimensional (2D) shear wave elastography (SWE) for predicting prognosis in patients with acutely decompensated cirrhosis. METHODS: We prospectively enrolled 288 acutely decompensated cirrhosis patients with a minimum 1-year follow-up, divided into a training cohort (202 patients, 1010 2D SWE images) and a test cohort (86 patients, 430 2D SWE images). Using transfer learning by Resnet-50 to analyze 2D SWE images, a SWE-based deep learning signature (DLswe) was developed for 1-year mortality prediction. A combined nomogram was established by incorporating deep learning SWE information and laboratory data through a multivariate Cox regression analysis. The performance of the nomogram was evaluated with respect to predictive discrimination, calibration, and clinical usefulness in the training and test cohorts. RESULTS: The C-index for DLswe was 0.748 (95% CI 0.666-0.829) and 0.744 (95% CI 0.623-0.864) in the training and test cohorts, respectively. The combined nomogram significantly improved the C-index, accuracy, sensitivity, and specificity of DLswe to 0.823 (95% CI 0.763-0.883), 86%, 75%, and 89% in the training cohort, and 0.808 (95% CI 0.707-0.909), 83%, 74%, and 85% in the test cohort (both p < 0.05). Calibration curves demonstrated good calibration of the combined nomogram. Decision curve analysis indicated that the nomogram was clinically valuable. CONCLUSIONS: The 2D SWE-based deep learning model holds promise as a noninvasive tool to capture valuable prognostic information, thereby improving outcome prediction in patients with acutely decompensated cirrhosis.


Assuntos
Aprendizado Profundo , Técnicas de Imagem por Elasticidade , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Técnicas de Imagem por Elasticidade/métodos , Prognóstico , Fígado/diagnóstico por imagem
18.
Ecotoxicol Environ Saf ; 266: 115610, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866036

RESUMO

Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCß2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCß2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCß2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCß2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCß2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.


Assuntos
Cádmio , Células Intersticiais do Testículo , Ratos , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Gotículas Lipídicas/metabolismo , Fosfolipase C beta/metabolismo , Ácidos Fosfatídicos/metabolismo , Diglicerídeos/metabolismo , Transdução de Sinais , Esteroides/metabolismo , Progesterona/metabolismo , Colesterol/metabolismo
19.
Nat Genet ; 55(11): 1807-1819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798380

RESUMO

A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth.


Assuntos
Estudo de Associação Genômica Ampla , Placenta , Feminino , Humanos , Gravidez , Peso ao Nascer/genética , Desenvolvimento Fetal/genética , Insulina , Placenta/metabolismo , Masculino
20.
J Clin Biochem Nutr ; 73(2): 131-137, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37700852

RESUMO

The tripartite motif 62 is an E3 ubiquitin ligase protein that regulates cellular processes, including differentiation, immunity, development and apoptosis, leading to various disease states, such as cancer and inflammatory diseases. However, the role and mechanism of the tripartite motif 62 in the process of diabetic-induced cognitive impairment have not been reported. Therefore, the aim of this study was to investigate the role and mechanism of the tripartite motif 62 in diabetic-induced cognitive impairment. The results showed that the expression of the tripartite motif 62 was up-regulated in diabetic mice. Silencing of TRIM62 increased body weight and decreased fasting blood glucose in diabetic mice. In addition, knockdown of the tripartite motif 62 inhibited STZ-induced inflammation, apoptosis and oxidative stress. Further studies showed that the TLR4/NF-κB pathway and NLRP3 inflammasomes were involved in the regulation of diabetic mice by the tripartite motif 62. More importantly, inhibition of the tripartite motif 62 improved cognitive impairment and learning ability in mice. In conclusion, inhibition of TRIM62 inhibits STZ-induced inflammation, cell apoptosis and oxidative stress, and improves the cognitive ability of mice. Therefore, the tripartite motif 62 may be an important target for the treatment of diabetes-induced cognitive impairment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...