Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38743894

RESUMO

Objective: Ureaplasma spp. comprise a group of mycoplasmas containing two human-associated species, namely, Ureaplasma urealyticum (UUR) and Ureaplasma parvum (UPA). The characterization of Ureaplasma species as pathogens contributing to male infertility remains a subject of considerable controversy. While numerous authors have proposed a relationship between UUR and changes in fertility, there is limited evidence supporting the involvement of UPA in this context. There has been an increased focus on Ureaplasma spp. and its potential role in the development of male infertility, especially over the past few years. The review aims to clarify the relationship between Ureaplasma species and male infertility. Methods: Firstly, we introduce a background of the appropriate biology including growth characteristics, the divided biovars, and the transmission pathways. Secondly, we examine the studies that support a causal role for Ureaplasma spp. in the development of infertility in the last 30 years. Finally, the diagnosed method, antimicrobial susceptibility, and potential therapeutic considerations are evaluated. Results: UPA and UUR can impair semen motility. The species of Ureaplasma spp., the sexual history of the patient, the number of sexual partners, the load of Ureaplasma, and antimicrobial resistance are expected to constitute key risk factors in the development of male infertility. In terms of treatment, Doxycycline remains the drug of first choice for ureaplasmal infections. Conclusion: Ureaplasma spp. are not simply "innocent bystanders" in infertility and may indeed be an "underestimated enemy of human reproduction". Ureaplasma spp. can be considered an etiological agent in unexplained infertility and a useful marker.

2.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629947

RESUMO

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Assuntos
Nitratos , Fotólise , Nitratos/química , Ácidos Dicarboxílicos/química , Ácido Nitroso/química , Umidade , Malonatos/química , Poluentes Atmosféricos/química
3.
Mol Neurobiol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483657

RESUMO

Despite tremendous advances in modern medicine, effective prevention or therapeutic strategies for age-related neurodegenerative diseases such as Alzheimer's disease (AD) remain limited. Growing evidence now suggests that oxidative stress and apoptosis are increasingly associated with AD as promising therapeutic targets. Pongamol, a flavonoid, is the main constituent of pongamia pinnata and possesses a variety of pharmacological activities such as antioxidant, anti-aging and anti-inflammatory. In the present study, we investigated the antioxidant effects and mechanisms of pongamol in H2O2-induced PC12 cells and Caenorhabditis elegans (C. elegans). Our findings revealed that pongamol reduced cellular damage and apoptosis in H2O2-induced PC12 cells. Furthermore, pongamol reduced levels of apoptosis-related proteins Bax, Cyto C, Cleaved Caspase-3, and Cleaved PARP1, and increased the level of anti-apoptotic protein Bcl-2. Pongamol also effectively attenuated the level of oxidative stress markers such as glutathione (GSH) and reactive oxygen species (ROS) in H2O2-induced PC12 cells. Additionally, pongamol possessed antioxidant activity in H2O2-induced PC12 cells through the MAPKs/Nrf2 signaling pathway. Furthermore, pongamol exerted neuroprotective and anti-aging effects in C. elegans. All together, these results suggested that pongamol has a potential neuroprotective effect through the modulation of MAPKs/Nrf2 signaling pathway.

4.
Plant Cell ; 36(5): 1755-1776, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318972

RESUMO

The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Folhas de Planta , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Morfogênese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
Invest Ophthalmol Vis Sci ; 65(2): 23, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345554

RESUMO

Purpose: Choroidal neovascularization (CNV) can constitute the final pathology of many ocular diseases and result in severe vision loss. Studies have demonstrated that DNA methylation is critical in retinal development, aging, and disorders. The current work investigated the effects and underlying mechanism of 5-Aza-2'-deoxycytidine (5-aza-dC), a suppressor of DNA methylation, in the pathological progression of CNV. Methods: The DNA methylation profiles of retinal pigment epithelial (RPE)/choroidal complexes in normal and laser-induced CNV mice were assessed by Arraystar Mouse RefSeq Promoter Arrays. The CNV area and blood flow density and intensity were observed by optical coherence tomography angiography, and fluorescence leakage was examined by fundus fluorescein angiography in CNV mice with systemic administration of 5-aza-dC. The effects of 5-aza-dC on the biological functions of bEnd.3 cells were estimated by related assays. Notum gene promoter methylation was measured using bisulfite sequencing PCR. Methyltransferases and Wnt signaling-related genes were detected in animal and cell culture experiments by real-time PCR and immunoblot. Results: Methyltransferases were upregulated, but Notum (a secretion inhibitor of Wnt signaling) was downregulated in the RPE/choroidal complexes of mice with experimental CNV. Intraperitoneal injection of 5-aza-dC inactivated the Wnt pathway and ameliorated the lesion area and the intensity and density of blood flow, as well as the degree of leakage in CNV. In vitro, vascular endothelial growth factor A (VEGFA) stimulation promoted methyltransferases expression and suppressed Notum expression, consequently activating Wnt signaling, whereas exogenous 5-aza-dC reversed VEGFA-induced hyperpermeability, proliferation, migration, and tube formation in bEnd.3 cells via demethylation of Notum promoter. Conclusions: We observed that 5-aza-dC attenuates the growth of CNV by inhibiting the Wnt signaling pathway via promoter demethylation of the Wnt antagonist Notum. These findings provide a theoretical basis for methylation-based treatment with the Notum gene as a potential target for CNV treatment.


Assuntos
Neovascularização de Coroide , Via de Sinalização Wnt , Camundongos , Animais , Via de Sinalização Wnt/genética , Decitabina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Azacitidina/farmacologia , Metiltransferases , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
Sci Signal ; 17(825): eadh1178, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412254

RESUMO

Pyroptosis, an inflammatory form of programmed cell death, is linked to the pathology of rheumatoid arthritis (RA). Here, we investigated the molecular mechanism underlying pyroptosis in T cells isolated from patients with RA. Compared with healthy individuals, patients with RA had more pyroptotic CD4+ T cells in blood and synovia, which correlated with clinical measures of disease activity. Moreover, the mRNA expression and protein abundance of arachidonate 5-lipoxygenase (ALOX5), which converts arachidonic acid to leukotriene A4 (LTA4), were increased in CD4+ T cells from patients with RA and, among patients with RA, were lowest in those in clinical remission. Knockdown or pharmacological inhibition of ALOX5 suppressed CD4+ T cell pyroptosis and improved symptoms in two rodent models of RA. Mechanistically, the increase in ALOX5 activity in RA CD4+ T cells enhanced the production of the LTA4 derivative LTB4, which stimulated Ca2+ influx through ORAI3 channels, leading to the activation of NLRP3 inflammasomes and pyroptosis. Our findings reveal a role for ALOX5 in RA and provide a molecular basis for further exploring the clinical utility of ALOX5 inhibition in RA and for using ALOX5 as a biomarker to distinguish active disease and remission in RA.


Assuntos
Artrite Reumatoide , Linfócitos T , Humanos , Linfócitos T/metabolismo , Piroptose , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Linfócitos T CD4-Positivos/metabolismo
7.
ACS Appl Mater Interfaces ; 16(4): 4772-4783, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243846

RESUMO

The Ni-rich Co-poor layered cathode (LiNixCoyMn1-x-yO2, x ≥ 0.9) is a candidate for the next-generation lithium-ion batteries due to its high specific capacity and low cost. However, the inherent structural instability and slow kinetics of Li+ migration hinder their large-scale application. Mo doping is proposed to enhance the crystal structure stability of LiNi0.9Co0.05Mn0.05O2 and to ensure the preservation of the spherical secondary particles after the cycle. The characterization results indicate that Mo doping not only significantly relieves the lattice strain accompanied by H2 → H3 phase transition but also alleviates particle stress accumulation to avoid pulverization. The Mo-modification allows the generation of uniform fine primary particulates and further agglomeration into the smooth secondary particles to inhibit electrolyte penetration. Hence, the Mo-modified sample NCM90-1%Mo displays an excellent capacity retention of 85.9% after 200 cycles at 0.5 C current density, which is 23.8% higher than that of the pristine NCM90. In addition, with the expansion of the Li slab to accelerate Li+ diffusion and the fine primary particles to shorten the Li+ pathway, the NCM90-1%Mo sample exhibits a high discharge capacity of 150 mAh g-1 at 5 C current density. This work provides a new thought for the design and construction of high-capacity cathode materials for the next-generation lithium-ion batteries.

8.
Arthritis Res Ther ; 26(1): 36, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273310

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease with a complex pathogenesis that has not yet been fully elucidated, and T-cell pyroptosis is an important pathogenetic factor in RA. This study aimed to investigate the role of endoplasmic reticulum aminopeptidase 2 (ERAP2) in the pyroptosis of CD4+ T cells in RA and the specific molecular mechanism. METHODS: Peripheral venous blood was collected from human subjects, and CD4+ T cells were isolated and activated to measure the level of pyroptosis and ERAP2 expression. Pyroptosis levels were assessed using immunofluorescence, flow cytometry, qRT-PCR, and Western blotting. Changes in pyroptosis levels were observed upon knockdown or overexpression of ERAP2. To detect activated Caspase-1 in tissues, chimeric mice were engrafted with human synovial tissue and reconstituted with human CD4+ T cells. CD4 + T cells were treated with GLI1 antagonists and SMO receptor agonists to detect changes in pyroptosis levels. RESULTS: CD4+ T cell levels undergoing pyroptosis were found to be elevated in the blood and synovium of RA patients. The gene and protein expression of ERAP2 were significantly higher in CD4+ T cells from RA patients. Deletion of ERAP2 suppressed pyroptosis of these cells, attenuated the activation of Caspase-1 in tissue T cells, and reduced tissue inflammatory responses. Reciprocally, overexpression of ERAP2 triggered inflammasome assembly, activated Caspase-1, and induced pyroptosis in CD4+ T cells. Mechanistically, ERAP2 inhibits the Hedgehog signaling pathway and upregulates the expression of nucleotide-binding oligomerization segment-like receptor family 3(NLRP3), cleaved Caspase-1, and Gasdermin D to promote pyroptosis in CD4+ T cells. CONCLUSIONS: Taken together, our results identify a novel mechanism by which ERAP2 regulates RA development and document the effect of the ERAP2/Hedgehog signaling axis on pyroptosis of CD4+ T cells from RA patients.


Assuntos
Artrite Reumatoide , Piroptose , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Artrite Reumatoide/metabolismo , Linfócitos T CD4-Positivos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Caspase 1/metabolismo , Aminopeptidases/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia
9.
J Colloid Interface Sci ; 657: 893-902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091912

RESUMO

The structure instability and cycling decay of silicon (Si) anode triggered by stress buildup hinder its practical application to next-generation high-energy-density lithium-ion batteries (LIBs). Herein, a cross-linking polymeric network as a self-healing binder for Si anode is developed by in situ polymerization of tannic acid (TA) and polyacrylic acid (PAA) binder labelled as TA-c-PAA. The branched TA as a physical cross-linker complexes with PAA main chains through abundant dynamic hydrogen bonds, endowing the cross-linking TA-c-PAA binder with unique self-healing property and strong adhesion for Si anode. Benefiting from the mechanical robust and hard adhesion, the Si@TA-c-PAA electrode exhibits high reversible specific capacities (3250 mAh/g at 0.05C (1C = 4000 mA g-1)), excellent rate capability (1599 mAh/g at 2C), and impressive cycling stability (1742 mAh/g at 0.25C after 450 cycles). After Ex situ morphology characterization, in situ swelling analysis, and finite element simulation, it is found that the TA-c-PAA binder allows the Si anode to dissipate stress and prevent pulverization during lithiation and delithiation, thus the hydrogen bonds among interpenetrating network may be adaptable to the stress intensity. Our work paves a new avenue for the design of efficient and cost-effective binders for next-generation Si anode in LIBs.

10.
J Chem Inf Model ; 64(7): 2746-2759, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37982753

RESUMO

The scientific literature contains valuable information that can be used for future applications, but manual analysis presents challenges due to its size and disciplinary boundaries. The prevailing solution involves natural language processing (NLP) techniques such as information retrieval. Nonetheless, existing automated systems primarily provide either statistically based shallow information or deep information without traceability, thereby falling short of delivering high-quality and reliable insights. To address this, we propose an innovative approach of leveraging sentiment information embedded within the literature to track the opinions toward materials. In this study, we integrated material knowledge into text representation and constructed opinion data sets to hierarchically train deep learning models, named as Scientific Sentiment Network (SSNet). SSNet can effectively extract knowledge from the energy material literature and accurately categorize expert opinions into challenges and opportunities (94% and 92% accuracy, respectively). By incorporating sentiment features determined by SSNet, we can predict the ranking of emerging thermoelectric materials with a 70% correlation to experimental outcomes. Furthermore, our model achieves a commendable 68% accuracy in predicting suitable nanomaterials for atomic layer deposition (ALD) over time. These promising results offer a practical framework to extract and synthesize knowledge from the scientific literature, thereby accelerating research in the field of nanomaterials.


Assuntos
Redes Neurais de Computação , Análise de Sentimentos , Armazenamento e Recuperação da Informação
11.
J Am Chem Soc ; 145(46): 25283-25292, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37857329

RESUMO

DNA-encoded chemical library (DEL) has been extensively used for lead compound discovery for decades in academia and industry. Incorporating an electrophile warhead into DNA-encoded compounds recently permitted the discovery of covalent ligands that selectively react with a particular cysteine residue. However, noncysteine residues remain underexplored as modification sites of covalent DELs. Herein, we report the design and utility of tyrosine-targeting DELs of 67 million compounds. Proteome-wide reactivity analysis of tyrosine-reactive sulfonyl fluoride (SF) covalent probes suggested three enzymes (phosphoglycerate mutase 1, glutathione s-transferase 1, and dipeptidyl peptidase 3) as models of tyrosine-targetable proteins. Enrichment with SF-functionalized DELs led to the identification of a series of tyrosine-targeting covalent inhibitors of the model enzymes. In-depth mechanistic investigation revealed their novel modes of action and reactive ligand-accessible hotspots of the enzymes. Our strategy of combining activity-based proteome profiling and covalent DEL enrichment (ABPP-CoDEL), which generated selective covalent binders against a variety of target proteins, illustrates the potential use of this methodology in further covalent drug discovery.


Assuntos
Proteoma , Tirosina , Proteoma/química , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Ligantes , DNA
12.
Physiol Plant ; 175(5): e14046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882293

RESUMO

Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F-box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medicago truncatula. In order to further dissect the molecular mechanism, MIO1 was used as the bait to screen its interacting proteins from a yeast library. Subsequently, a KIX protein, designated MtKIX8, was identified from the candidate list. The interaction between MIO1 and MtKIX8 was confirmed further by Y2H, BiFC, split-luciferase complementation and pull-down assays. Phylogenetic analyses indicated that MtKIX8 is highly homologous to Arabidopsis KIX8, which negatively regulates organ size. Moreover, loss-of-function of MtKIX8 led to enlarged leaves and seeds, while ectopic expression of MtKIX8 in Arabidopsis resulted in decreased cotyledon area and seed weight. Quantitative reverse-transcription PCR and in situ hybridization showed that MtKIX8 is expressed in most developing organs. We also found that MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins in M. truncatula. Overall, our results suggest that the MIO1-MtKIX8 module plays a significant and conserved role in the regulation of plant organ size. This module could be a good target for molecular breeding in legume crops and forages.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tamanho do Órgão , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
13.
Medicine (Baltimore) ; 102(40): e35291, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37800804

RESUMO

BACKGROUND: Chemogenetics has been widely adopted in Neuroscience. Neuroscience has become a hot research topic for scientists. Therefore, the purpose of this study is to explore the current status and trends in the global application of chemogenetics in neuroscience over the last 14 years via CiteSpace. METHODS: Publications related to chemogenetics in neuroscience were retrieved from the Science Citation Index-Extended Web of Science from 2008 to 2021. We used CiteSpace to analyze publications, citations, cited journals, countries, institutions, authors, cited authors, cited references, and keywords. RESULTS: A total of 947 records were retrieved from 2008 to 2021 on February 21, 2022. The number and rate of publications and citations increased significantly. Journal of Neuroscience was the most cited journal, and BRAIN RES BULL ranked first in the centrality of cited journals. The United States of America (USA) had the highest number of publications among the countries. Takashi Minamoto was the most prolific author and Armbruster BN ranked the first among authors cited. The first article in the frequency ranking of the references cited was published by Roth BL. The keyword of "nucleus accumben (NAc)" had the highest frequency. The top 3 keywords with the strongest citation bursts include "transgenic mice," "cancer," and "blood-brain barrier." CONCLUSION: The period 2008 to 2021 has seen a marked increase in research on chemogenetics in neuroscience. The application of chemogenetics is indispensable for research in the field of neuroscience. This bibliometrics study provides the current situation and trend in chemogenetic methods in neuroscience in recent 14 years, which may help researchers to identify the hot topics and frontiers for future studies in this field.


Assuntos
Bibliometria , Médicos , Animais , Camundongos , Humanos , Barreira Hematoencefálica , Camundongos Transgênicos , Pesquisadores
14.
J Inflamm (Lond) ; 20(1): 29, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649043

RESUMO

The strong perioperative stress response caused by surgical anesthesia can significantly suppress immune function, and the body is in a state of immunosuppression for 3 to 4 days after surgery, which leads to an increase in the probability of postoperative infection. Traditional Chinese medicine believes that acupuncture points can "reconcile yin and yang", promote the recovery of immune function, and help reduce the incidence of postoperative infection. Macrophages are an important type of immune cells that participate in the body's innate immunity. They have powerful phagocytosis and clearance functions. They can be polarized into M1 and M2 types under the regulation of the body, and play different roles in fighting microbial infections. Among them, the M1 type can participate in the elimination of pathogens. In this study, we will investigate the perioperative acupoint electrical stimulation to alleviate the immunosuppressive state of surgical stress mice, clarify the regulation of perioperative acupoint electrical stimulation on glucocorticoids and the relationship between NF-κB molecules and macrophage polarization.The key molecules of related pathways were verified by glucocorticoid receptor inhibitors, and it was found that electrical stimulation of acupoints during the perioperative period can affect the polarization of macrophages in surgically stressed mice to the M1 type by reducing the level of glucocorticoids and promoting the expression of NF κB molecules. Further reveal the partial mechanism of electroacupuncture regulating the anti-inflammatory and pro-inflammatory processes of macrophages in the immune response.

15.
J Plant Physiol ; 287: 154055, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37506405

RESUMO

Long noncoding RNAs (lncRNAs) play essential roles in numerous biological processes in plants, such as regulating the gene expression. However, only a few studies have looked into their potential functions in xylem development. High-throughput sequencing of P. euramericana 'Zhonglin46' developing and mature xylem was performed in this study. Through sequencing analysis, 14,028 putative lncRNA transcripts were identified, including 4525 differentially expressed lncRNAs (DELs). Additional research revealed that in mature xylem, a total of 2320 DELs were upregulated and 2205 were downregulated compared to developing xylem. Meanwhile, there were a total of 8122 differentially expressed mRNAs (DEMs) that were upregulated and 16,424 that were downregulated in mature xylem compared with developing xylem. The cis- and trans-target genes of DELs were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, which indicated that these DELs participate in controlling the phenylpropanoid and lignin biosynthesis pathway as well as the starch and sucrose metabolism pathway. Among the cis-regulated DELs, LNC_006291, LNC_006292, and LNC_006532 all participate in regulating multiple HCT gene family membranes. As targets, POPTR_001G045900v3 (CCR2) and POPTR_018G063500v3 (SUS) both have only one cis-regulatory lncRNA, referred to as LNC_000057 and LNC_006212, respectively. Moreover, LNC_004484 and two DELs named LNC_008014 and LNC_010781 were revealed to be important nodes in the co-expression network of trans-lncRNAs and mRNAs associated to the lignin biosynthesis pathway and cellulose and xylan biosynthetic pathways, respectively. Finally, quantitative real-time PCR (qRT-PCR) was used to confirme 34 pairs of lncRNA-mRNA. Taken together, these findings may help to clarify the regulatory role that lncRNAs play in xylem development and wood formation.


Assuntos
Populus , RNA Longo não Codificante , RNA Mensageiro/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Populus/genética , Lignina , Xilema/genética , Xilema/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
16.
Ecotoxicol Environ Saf ; 261: 115110, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37300917

RESUMO

The natural resistance-associated macrophage protein (NRAMP) gene family plays a key role in essential mineral nutrient homeostasis, as well as toxic metal accumulation, translocation, and detoxification. Although the NRAMP family genes have been widely identified in various species, they still require to be analyzed comprehensively in tree species. In this study, a total of 11 NRAMP members (PtNRAMP1-11) were identified in Populus trichocarpa, a woody model plant, and further subdivided into three groups based on phylogenetic analysis. Chromosomal location analysis indicated that the PtNRAMP genes were unevenly distributed on six of the 19 Populus chromosomes. Gene expression analysis indicated that the PtNRAMP genes were differentially responsive to metal stress, including iron (Fe) and manganese (Mn) deficiency, as well as Fe, Mn, zinc (Zn), and cadmium (Cd) toxicity. Furthermore, the PtNRAMP gene functions were characterized using a heterologous yeast expression system. The results showed that PtNRAMP1, PtNRAMP2, PtNRAMP4, PtNRAMP9, PtNRAMP10, and PtNRAMP11 displayed the ability to transport Cd into yeast cells. In addition, PtNRAMP1, PtNRAMP6, and PtNRAMP7 complemented the Mn uptake mutant, while PtNRAMP1, PtNRAMP6, PtNRAMP7, and PtNRAMP9 complemented the Fe uptake mutant. In conclusion, our findings revealed the respective functions of PtNRAMPs during metal transport as well as their potential role in micronutrient biofortification and phytoremediation.


Assuntos
Proteínas de Transporte de Cátions , Metais Pesados , Populus , Populus/genética , Populus/metabolismo , Cádmio/metabolismo , Saccharomyces cerevisiae/metabolismo , Filogenia , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
17.
Chem Biodivers ; 20(7): e202300275, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37317928

RESUMO

Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities. The Phomopsis sp. LGT-5 was obtained through tissue block and repeatedly crossed methods from Tripterygium wilfordii Hook. F. The antibacterial experiments of LGT-5 showed that it has high inhibitory activity against Staphylococcus aureus and Pseudomonas aeruginosa, and moderate inhibitory activity against Candida albicans. To research the generation of the antibacterial phenomenon of LGT-5 and provide support for further research and application, the whole genome sequencing (WGS) of LGT-5 was obtained by single-molecule real-time DNA sequencing platform Pacific Biosciences (PacBio) sequencing and Illumina paired-end sequencing. The final assembled LGT-5 genome is 54.79 Mb with a contig N50 of 290.07 kb; in addition, its secondary metabolites were detected through HPLC-Q-ToF-MS/MS. By comparing its MS/MS data, the secondary metabolites were analyzed based on visual network maps obtained on the Global Natural Products Social Molecular Networking (GNPS). The analysis results showed that the secondary metabolites of LGT-5 were triterpenes and various cyclic dipeptides.


Assuntos
Phomopsis , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Sequenciamento Completo do Genoma , Análise de Sequência de DNA
18.
Sci Prog ; 106(2): 368504231181769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37306208

RESUMO

Cyclone separation is an effective method for the treatment of oily wastewater from offshore oil production platforms. There is a lack of research on the impact of dispersion on the separation efficiency of current liquid-liquid separation hydrocyclones. A numerical simulation method was used to study the effect of the oil droplet characteristic parameters on the separation efficiency of a hydrocyclone oil removal device. An analysis of the trajectory of oil droplets revealed the oil removal mechanism of the hydrocyclone oil removal device: under the guidance of tangential velocity, the oil-water mixed fluid in the equipment generates different centrifugal forces due to the density difference, so oil and water adopt different flow paths to flow out. The effects of the particle diameter, velocity, and concentration of the inlet oil droplet on the separation efficiency were investigated. The droplet size had a positive effect on the separation efficiency, the oil concentration had a negative effect on the separation efficiency, and the speed of the oil drop was directly proportional to the separation efficiency within a certain range. These studies improved the basis for the efficient application of hydrocyclone oil removal devices.

19.
Phytochemistry ; 213: 113750, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37279870

RESUMO

Biotransformation of toxic components by plant endophytes has become an effective method to reduce the toxicity of target compounds and discover lead compounds. In this context, an endophytic fungus, Pestalotiopsis sp. LGT-1, from Tripterygium wilfordii Hook F. (TwHF), was used to reduce the toxicity of celastrol which is also produced by TwHF and is considered an attractive molecule with a variety of biological activities. Seven celastrol derivatives (1-7) were isolated from the coculture fermentation broth of LGT-1 and celastrol. Their structures were elucidated by spectroscopic data analysis including 1D and 2D NMR, as well as HRESIMS. Their absolute configurations were determined by analysis of NOESY, ECD data and NMR calculations. In cell proliferation experiments, the toxicity of seven compounds was 10.11- to 1.24-fold lower in normal cells than the prototype compound celastrol. These derivatives serve as potential candidates for future pharmaceutical applications.


Assuntos
Pestalotiopsis , Tripterygium , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Biotransformação
20.
Transl Vis Sci Technol ; 12(6): 9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310736

RESUMO

Purpose: The purpose of this study was to develop the Chinese version of Ultra-Low Vision Visual Functioning Questionnaire-150 (ULV-VFQ-150) and evaluate its psychometric function. Methods: A standardized procedure for the translation of ULV-VFQ-150 was carried out, including the forward translation, consistency check, back translation, back review, and coordination. Participants with ultra-low vision (ULV) were recruited for the questionnaire survey. Psychometric characteristics were evaluated using Rasch analysis based on Item Response Theory (IRT), and some items were revised and proofread accordingly. Results: In total, 70 out of 74 responders completed the Chinese ULV-VFQ-150, of which 10 were excluded because their vision did not meet the criterion of ULV. Therefore, 60 valid questionnaires were analyzed (valid response rate = 81.1%). The average age of eligible responders was 49.0 years (standard deviation = 16.0), with 35% female subjects (21/60). The person measures (ability) ranged from -1.7 to +4.9 logits, and the item measures (difficulty) ranged from -1.6 to +1.2 logits. The mean value of item difficulty and personnel ability were 0.00 and 0.62 logits, respectively. The reliability index was 0.87 for items and 0.99 for persons, and the overall fit is good. The items conform to unidimensionality as indicated by principal component analysis of the residuals. Conclusions: The Chinese version of ULV-VFQ-150 is a reliable questionnaire for evaluating both visual function and functional vision in people with ULV in China. Translational Relevance: The Chinese version of ULV-VFQ-150 is a new assessment of the visual function of people with ULV in China.


Assuntos
Baixa Visão , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Reprodutibilidade dos Testes , Baixa Visão/diagnóstico , Transtornos da Visão/diagnóstico , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...