Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Small Methods ; : e2400425, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593370

RESUMO

While the 2D/3D heterojunction is an effective method to improve the power conversion efficiency (PCE) of perovskite solar cells (PSCs), carriers are often confined in the quantum wells (QWs) due to the unique structure of 2D perovskite, which makes the charge transport along the out-of-plane direction difficult. Here, a 2D/3D ferroelectric heterojunction formed by 4,4-difluoropiperidine hydrochloride (2FPD) in inverted PSCs is reported. The enriched 2D perovskite (2FPD)2PbI4 layer with n = 1 on the perovskite surface exhibits ferroelectric response and has oriented dipoles along the out-of-plane direction. The ferroelectricity of the oriented dipole layer facilitates the enhancement of the built-in electric field (1.06 V) and the delay of the cooling process of hot carriers, reflected in the high carrier temperature (above 1400 K) and the prolonged photobleach recovery time (139.85 fs, measured at bandgap), improving the out-of-plane conductivity. In addition, the alignment of energy levels is optimized and exciton binding energy (32.8 meV) is reduced by changing the dielectric environment of the surface. Finally, the 2FPD-treated PSCs achieve a PCE of 24.82% (certified: 24.38%) with the synergistic effect of ferroelectricity and defect passivation, while maintaining over 90% of their initial efficiency after 1000 h of maximum power point tracking.

2.
Small ; : e2306978, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195877

RESUMO

In inverted perovskite solar cells, conventional planar 2D/3D perovskite heterojunctions typically exhibit a type-II band alignment, where the electric field tends to drive the electron motion in the opposite direction to the direction of electron transfer. Here, a 2D/3D gradient heterojunction is developed by allowing the 2D perovskite to infiltrate the 3D perovskite surface along the grain boundaries using the interaction between the organic cation of the 2D perovskite and the pseudohalogen thiocyanate ion (SCN- ), which has the ability to diffuse downward. The infiltrated 2D perovskite not only fills the gaps of grain boundaries with improved structural stability, but it also reconstructs the original landscape of the electric field toward the n-doped surface to enable more rapid electron transfer and weaken the adverse type-II band alignment effect. Since 2D perovskite seals the GBs, the nonvolatile SCN- can accumulate at the top and bottom dual interfaces, releasing residual stress and significantly inhibiting nonradiative recombination. The device exhibits an excellent efficiency of 24.76% (certified 24.29%) and long-term stability that is >90% of the original PCE value after 800 h of heating at 85 °C or in high humidity (≈65%).

3.
Mater Horiz ; 10(12): 5763-5774, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37811708

RESUMO

Many studies have shown that the severe photoluminescence quantum yield (PLQY) loss at the interface between the perovskite and electron transport layer (ETL) is the main cause of voltage loss in inverted perovskite solar cells (p-i-n PSCs). However, currently there are no effective in situ passivation techniques to minimize this nonradiative recombination. Here, the fluorinated pseudohalide ionic liquid (FPH-IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI) is introduced into the perovskite precursor formulation. EMIMTFSI can change the dielectric environment and energy-level arrangement of the perovskite by accumulating on the top surface and spontaneously forming dipoles. As a result, the excitonic binding energy (Eb) and nonradiative recombination loss are significantly reduced. At the same time, TFSI- reduces the formation energy of vacancy defects and stabilizes the perovskite phase by forming N-H⋯F hydrogen bonds between FA+ and the C-F bond in EMIMTFSI. Finally, the EMIMTFSI-modified p-i-n PSCs achieve an excellent efficiency of 24.81% with an impressive open-circuit voltage of 1.191 V for a 1.57 eV low-bandgap perovskite. In addition, the modified devices can maintain more than 95% PCE after continuous thermal aging at 85 °C for 500 h or illumination at the maximum power point for 800 h. This work provides a new idea for minimizing the non-radiative recombination losses in p-i-n PSCs.

4.
Eur J Radiol ; 166: 111015, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541183

RESUMO

OBJECTIVE: To systematically review the efficacy of radiomics models derived from computed tomography (CT) or magnetic resonance imaging (MRI) in preoperative prediction of the histopathological grade of hepatocellular carcinoma (HCC). METHODS: Systematic literature search was performed at databases of PubMed, Web of Science, Embase, and Cochrane Library up to 30 December 2022. Studies that developed a radiomics model using preoperative CT/MRI for predicting the histopathological grade of HCC were regarded as eligible. A pre-defined table was used to extract the data related to study and patient characteristics, characteristics of radiomics modelling workflow, and the model performance metrics. Radiomics quality score and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were applied for research quality evaluation. RESULTS: Eleven eligible studies were included in this review, consisting of 2245 patients (range 53-494, median 165). No studies were prospectively designed and only two studies had an external test cohort. Half of the studies (five) used CT images and the other half MRI. The median number of extracted radiomics features was 328 (range: 40-1688), which was reduced to 11 (range: 1-50) after feature selection. The commonly used classifiers were logistic regression and support vector machine (both 4/11). When evaluated on the two external test cohorts, the area under the curve of the radiomics models was 0.70 and 0.77. The median radiomics quality score was 10 (range 2-13), corresponding to 28% (range 6-36%) of the full scale. Most studies showed an unclear risk of bias as evaluated by QUADAS-2. CONCLUSION: Radiomics models based on preoperative CT or MRI have the potential to be used as an imaging biomarker for prediction of HCC histopathological grade. However, improved research and reporting quality is required to ensure sufficient reliability and reproducibility prior to implementation into clinical practice.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Reprodutibilidade dos Testes , Meios de Contraste , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos
5.
Small ; 19(40): e2303213, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37269195

RESUMO

Disordered crystallization and poor phase stability of mixed halide perovskite films are still the main factors that compromise the performance of inverted wide bandgap (WBG; 1.77 eV) perovskite solar cells (PSCs). Great difficulties are evidenced due to the very different crystallization rates between I- and Br-based perovskite components through DMSO-alone assisted anti-solvent process. Here, a zwitterionic additive strategy is reported for finely regulating the crystal growth of Cs0.2 FA0.8 Pb(I0.6 Br0.4 )3 , thereby obtaining high-performance PSCs. The aminoethanesulfonic acid (AESA) is introduced to form hydrogen bonds and strong PbO bonds with perovskite precursors, realizing the complete coordination with both the organic (FAI) and inorganic (CsI, PbI2 , PbBr2 ) components, balancing their complexation effects, and realizing AESA-guided fast nucleation and retarded crystallization processes. This treatment substantially promotes homogeneous crystal growth of I- and Br-based perovskite components. Besides, this uniformly distributed AESA passivates the defects and inhibits the photo-induced halide segregation effectively. This strategy generates a record efficiency of 19.66%, with a Voc of 1.25 V and FF of 83.7% for an MA-free WBG p-i-n device at 1.77 eV. The unencapsulated devices display impressive humidity stability at 30 ± 5% RH for 1000 h and much improved continuous operation stability at MPP for 300 h.

6.
Small ; 19(32): e2301091, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37069780

RESUMO

Surface heterojunction has been regarded as an effective method to improve the device efficiency of perovskite solar cells. Nevertheless, the durability of different heterojunction under thermal stress is rarely investigated and compared. In this work, benzylammonium chloride and benzyltrimethylammonium chloride are utilized to construct 3D/2D and 3D/1D heterojunctions, respectively. A quaternized polystyrene is synthesized to construct a three-dimensional perovskite/amorphous ionic polymer (3D/AIP) heterojunction. Due to the migration and volatility of organic cations, severe interfacial diffusion is found among 3D/2D and 3D/1D heterojunctions, in which the quaternary ammonium cations in the 1D structure are less volatile and mobile than the primary ammonium cations in the 2D structure. 3D/AIP heterojunction remains intact under thermal stress due to the strong ionic bond anchoring at the interface and the ultra-high molecular weight of AIP. Furthermore, the dipole layer formed by AIP can further reduce the voltage loss caused by nonradiative recombination at the interface by 0.088 V. Therefore, the devices based on the 3D/AIP heterojunction achieve a champion power conversion efficiency of 24.27% and maintain 90% of its initial efficiency after either thermal aging for 400 h or wet aging for 3000 h, showing a great promise for polymer/perovskite heterojunction towards real applications.

7.
Diagnostics (Basel) ; 13(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36766518

RESUMO

Histopathologic grade of hepatocellular carcinoma (HCC) is an important predictor of early recurrence and poor prognosis after curative treatments. This study aims to develop a radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting HCC histopathologic grade and to validate its predictive performance in an independent external cohort. Clinical and imaging data of 403 consecutive HCC patients were retrospectively collected from two hospitals (265 and 138, respectively). Patients were categorized into poorly differentiated HCC and non-poorly differentiated HCC groups. A total of 851 radiomics features were extracted from the segmented tumor at the hepatobiliary phase images. Three classifiers, logistic regression (LR), support vector machine, and Adaboost were adopted for modeling. The areas under the curve of the three models were 0.70, 0.67, and 0.61, respectively, in the external test cohort. Alpha-fetoprotein (AFP) was the only significant clinicopathological variable associated with HCC grading (odds ratio: 2.75). When combining AFP, the LR+AFP model showed the best performance, with an AUC of 0.71 (95%CI: 0.59-0.82) in the external test cohort. A radiomics model based on gadoxetic acid-enhanced MRI was constructed in this study to discriminate HCC with different histopathologic grades. Its good performance indicates a promise in the preoperative prediction of HCC differentiation levels.

8.
Mater Horiz ; 10(1): 122-135, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36317487

RESUMO

Green-solvent-processed perovskite solar cells (PSCs) have reached an efficiency of 20%, showing great promise in safe industrial production. However, the nucleation process in green-solvent-based deposition is rarely optimized, resulting in randomized crystallization and much lowered reported efficiencies. Herein, a nanostructured tin oxide nanorods (SnO2-NRs) substrate is utilized to prepare a high-quality formamidinium (FA)-based perovskite film processed from a green solvent of triethyl phosphate (TEP) with a low toxic antisolvent of dibutyl ether (DEE). Compared with SnO2 nanoparticles, the oriented SnO2-NRs can accelerate the formation of heterogeneous nucleation sites and retard the crystal growth process of the perovskite film, resulting in a high-quality perovskite film with uniform grain growth. Furthermore, a chlorine-terminated bifunctional supramolecule (Cl-BSM) is introduced to passivate the increasing interfacial defects due to the vast contact area in SnO2-NRs. Correspondingly, the substrate design of SnO2-NRs with Cl-BSM increases the power conversion efficiency (PCE) of green-solvent-processed PSCs to 22.42% with an open-circuit voltage improvement from 1.02 to 1.12 V, which can be attributed to the uniform grain growth and reduced carrier recombination at the SnO2-NRs/perovskite interface. More importantly, the photo and humidity stabilities of the unencapsulated device for up to 500 and 1000 hours are also achieved with negligible interfacial delamination after aging. This work provides a new perspective on the future industrial scale production of PSCs using environment-friendly solvents with compatible substrate design.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36310522

RESUMO

In the sequential deposition method of perovskite films, the crystallinity and microstructure of PbI2 are often sacrificed to solve the problem of an incomplete reaction between organic halide and lead halide. As a result, the crystal orientation of the perovskite film prepared by the sequential deposition method is generally worse than that of the perovskite film prepared by a one-step antisolvent method. Here, we preplaced formamidine formate (FAFa) on the buried interface to regulate the formation mechanism from PbI2 to perovskite. As shown by the XPS measurement of the perovskite buried interface, the HCOO- anion of FAFa first partially replaces I- to coordinate with Pb2+. With the subsequent annealing process, some HCOO- anions were released and migrated upward, which promoted the recrystallization of PbI2, obtaining a PbI2 film with enhanced crystallinity and orientation. Additionally, the lift-off process proves that the HCOO- anions suppress the anion vacancy defects enriched at the buried interface and promote charge transport because the HCOO- anions are small enough to adapt to the iodide vacancy. Grazing incidence wide-angle X-ray scattering and X-ray diffraction measurements show that the in situ conversion mechanism is responsible for the PbI2-to-perovskite process, resulting in the highly oriented perovskite film without increasing the residual PbI2 content in the perovskite film. As a result, our strategies enabled a champion power conversion efficiency of 23.48% with improved storage stability and photostability. This work provides a new strategy to improve the crystallinity of sequential deposition perovskites without destabilizing the device due to more PbI2 residues.

10.
Small Methods ; 6(11): e2200933, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36161787

RESUMO

Transition of δ-phase formamidinium lead triiodide (δ-FAPbI3 ) to pure α-phase FAPbI3 (α-FAPbI3 ) typically requires high processing temperature (150 °C), which often results in unavoidable residual stress. Besides, using methylammonium chloride (MACl) as additive in fabrication will cause MA residue in the film, compromising the compositional purity. Here, a stress-released and compositional-pure α-FAPbI3 thin-film is fabricated using 3-chloropropylammonium chloride (Cl-PACl) by two-step annealing. The 2D template of n = 2 can preferentially form in perovskite with the introduction of Cl-PACl at a temperature as low as 80 °C. Such a 2D template can guide the free components to form ordered α-FAPbI3 and promote the transition of the formed δ-FAPbI3 to α-FAPbI3 by reducing the phase transition energy. As a result, the obtained perovskite films via low-temperature phase-transition have a high degree of crystal orientation and reduced residual stress. More importantly, most of the Cl-PACl is volatilized during the subsequent high-temperature annealing process accompanied by the disintegration of the 2D templates. The residual trace of Cl-PA+ is mainly concentrated at the grain boundary near the perovskite surface layer, stabilizing α-FAPbI3 and passivating defects. Perovskite solar cell based on pure α-FAPbI3 achieves a power conversion efficiency of 23.03% with excellent phase stability and photo-stability.

11.
Small ; 18(44): e2203886, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36148856

RESUMO

Inverted-structure perovskite solar cells (PSCs) are known for their superior device stability. However, based on nickel-oxide (NiOx ) substrate, disordered crystallization and bottom interface instability of perovskite film are still the main factors that compromise the power conversion efficiency (PCE) of PSCs. Here, 2D perovskite of thiomorpholine 1,1-dioxide lead iodide (Td2 PbI4 ) is introduced as a template to prepare 3D perovskite thin film with high crystal orientation and large grain size via a bottom-up growth method. By adding TdCl to the precursor solution, pre-crystallized 2D Td2 PbI4 seeds can accumulate at the bottom interface, lowering the barrier of nucleation, and templating the growth of 3D perovskite films with improved (100) orientation and reduced defects during crystallization. In addition, 2D Td2 PbI4 at the bottom interface also hinders the interfacial redox reaction and reduces the hole extraction barrier on the buried interface. Based on this, the Td-0.5 PSC achieves a PCE of 22.09% and an open-circuit voltage of 1.16 V. Moreover, Td-0.5 PSCs show extremely high stability, which retains 84% of its initial PCE after 500 h of continuous illumination under maximum power point operating conditions in N2 atmosphere. This work paves the way for performance improvement of inverted PSCs on NiOx substrate.

12.
Nanomicro Lett ; 14(1): 165, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974239

RESUMO

The complete elimination of methylammonium (MA) cations in Sn-Pb composites can extend their light and thermal stabilities. Unfortunately, MA-free Sn-Pb alloyed perovskite thin films suffer from wrinkled surfaces and poor crystallization, due to the coexistence of mixed intermediate phases. Here, we report an additive strategy for finely regulating the impurities in the intermediate phase of Cs0.25FA0.75Pb0.6Sn0.4I3 and, thereby, obtaining high-performance solar cells. We introduced d-homoserine lactone hydrochloride (D-HLH) to form hydrogen bonds and strong Pb-O/Sn-O bonds with perovskite precursors, thereby weakening the incomplete complexation effect between polar aprotic solvents (e.g., DMSO) and organic (FAI) or inorganic (CsI, PbI2, and SnI2) components, and balancing their nucleation processes. This treatment completely transformed mixed intermediate phases into pure preformed perovskite nuclei prior to thermal annealing. Besides, this D-HLH substantially inhibited the oxidation of Sn2+ species. This strategy generated a record efficiency of 21.61%, with a Voc of 0.88 V for an MA-free Sn-Pb device, and an efficiency of 23.82% for its tandem device. The unencapsulated devices displayed impressive thermal stability at 85 °C for 300 h and much improved continuous operation stability at MPP for 120 h.

13.
ChemSusChem ; 15(6): e202102474, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35023623

RESUMO

In sequential-deposited polycrystalline perovskite solar cells, the unreacted lead iodide due to incomplete conversion of lead iodide to perovskite phase, can contribute to ionic defects, such as residual lead ions (Pb2+ ). At present, passivation of interfacial and grain boundary defects has become an effective strategy to suppress charge recombination. Here, we introduced potassium acetate (KAc) and potassium dichloroacetate (KAcCl2 ) as additives in the sequential deposition of polycrystalline perovskite thin films and found that acetate ions (Ac- ) can effectively reduce the residual lead iodide. Compared with acetate (Ac), dichloroacetate (AcCl2 ) can form Pb-Cl and Pb-O bonding as "dual anchoring" bonds with residual Pb2+ , resulting in strong binding force and effective passivation of residual Pb2+ defects. Furthermore, K+ can enlarge grain size and restrain ion migration at the grain boundaries. Consequently, perovskite solar cells with KAcCl2 additive show power conversion efficiencies (PCE) from 19.67 % to 22.12 %, with the open-circuit voltage increasing from 1.06 V to 1.14 V. The unencapsulated device can maintain 82 % of the initial PCE under a humidity of 30±5 % for 1200 h. This work provides a new approach for the regulation of ionic defects and grain boundaries at the same time to develop high-performance planar perovskite solar cells.

14.
Small ; 18(6): e2105184, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34851037

RESUMO

Although incorporating multiple halogen (bromine) anions and alkali (rubidium) cations can improve the open-circuit voltage (Voc ) of perovskite solar cells (PSCs), severe voltage loss and poor stability have remained pivotal limitations to their further commercialization. In this study, acetylcholine (ACh+ ) is anchored to the surface of a quadruple-cation perovskite to provide additional electron states near the valence band maximum of the perovskite surface, thereby enhancing the band alignment and minimizing the Voc loss significantly. Moreover, the quaternary ammonium and carbonyl units of ACh+ passivate the antisite and vacancy defects of the organic/inorganic hybrid perovskite. Because of strong interactions between ACh+ and the perovskite, the formation of lead clusters and the migration of halogen anions in the perovskite film are suppressed. As a result, the device prepared with ACh+ post-treatment delivers a power conversion efficiency (PCE) (21.56%) and a value of Voc (1.21 V) that are much higher than those of the pristine device, along with a twofold decrease in the hysteresis index. After storage for 720 h in humid air, the device subjected to ACh+ treatment maintained 70% of its initial PCE. Thus, post-treatment with ACh+ appears to be a useful strategy for preparing efficient and stable PSCs.


Assuntos
Acetilcolina , Compostos de Cálcio , Cátions , Óxidos , Titânio
15.
ACS Nano ; 14(9): 11130-11139, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32813496

RESUMO

Circular polarized luminescence (CPL) is essential to chiral sciences and photonic technologies, but the achievement of circular polarized room-temperature phosphorescence (CPRTP) remains a great challenge due to the instability of triplet state excitons. Herein, we found that dual CPL and CPRTP were demonstrated by hybrid chiral photonic films designed by the coassembly of cellulose nanocrystals (CNCs), poly(vinyl alcohol) (PVA), and carbon dots (CDs). Tunable photonic band gaps were achieved by regulating the ratio of CNC/PVA in the hybrid films, leading to tunable CPL with invertible handedness, tunable wavelengths, and considerable dissymmetric factors (glum) up to -0.27. In particularly, triplet excitons produced by CDs were stable in the chiral photonic crystal environment, resulting in tunable right-handed CPRTP with long lifetimes up to 103 ms and large RTP dissymmetric factors (gRTP) up to -0.47. Moreover, patterned films with multiple polarized features were demonstrated by a mold technique.

16.
Emerg Microbes Infect ; 9(1): 1537-1545, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32573353

RESUMO

Background: Novel coronavirus pneumonia (COVID-19) is prevalent around the world. We aimed to describe epidemiological features and clinical course in Shanghai. Methods: We retrospectively analysed 325 cases admitted at Shanghai Public Health Clinical Center, between January 20 and February 29, 2020. Results: 47.4% (154/325) had visited Wuhan within 2 weeks of illness onset. 57.2% occurred in 67 clusters; 40% were situated within 53 family clusters. 83.7% developed fever during the disease course. Median times from onset to first medical care, hospitalization and negative detection of nucleic acid by nasopharyngeal swab were 1, 4 and 8 days. Patients with mild disease using glucocorticoid tended to have longer viral shedding in blood and feces. At admission, 69.8% presented with lymphopenia and 38.8% had elevated D-dimers. Pneumonia was identified in 97.5% (314/322) of cases by chest CT scan. Severe-critical patients were 8% with a median time from onset to critical disease of 10.5 days. Half required oxygen therapy and 7.1% high-flow nasal oxygen. The case fatality rate was 0.92% with median time from onset to death of 16 days. Conclusion: COVID-19 cases in Shanghai were imported. Rapid identification, and effective control measures helped to contain the outbreak and prevent community transmission.


Assuntos
Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , China/epidemiologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/terapia , Feminino , Seguimentos , Indicadores Básicos de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/diagnóstico , Pneumonia Viral/terapia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Eliminação de Partículas Virais , Adulto Jovem
17.
Talanta ; 210: 120649, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987173

RESUMO

Nitrogen and copper co-doped carbon dots (Cu-NCDs) were prepared by solvothermal carbonization of folic acid and CuCl2. The N-containing groups including sp2-hybridized CN, porphyrin C-N-C and amino N in N-(C) 3 or H-N-(C) 2, and the Cu-containing group, N-Cu-N, have formed on the surface and framework of Cu-NCDs. The Cu-NCDs were monodisperse with the average particle diameter of 3.57 nm and exhibited dual fluorescence emission peaks at 410 and 470 nm with the excitation wavelength of 340 nm. The new emission center of 410 nm might originate from the Cu doping which changed the structural network and surface state of the carbon dots. The Cu-NCDs exhibited good fluorescence quenching response towards ascorbic acid (AA) from 0.02 to 40 µM (R2 = 0.992), and the limit of detection was 17.8 nM. The mechanism of the quenching process is non-oxidation reduction strategy based static quenching (SQE). Cu doping can improve the selectivity and sensitivity for Cu-NCDs towards AA benefiting from its chelation effect towards multi-hydroxyl in AA. Cu and N doping cause positively charged surface of Cu-NCDs, improving the interaction towards AA and then the stable Cu-NCD-based non-luminescent compounds formed, which resulted SQE. The Cu-NCDs possessed low cellular toxicity and showed good uptake by HepG2 cells.


Assuntos
Ácido Ascórbico/análise , Carbono/química , Cobre/química , Nitrogênio/química , Imagem Óptica , Pontos Quânticos/química , Células Hep G2 , Humanos , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
18.
Anal Chim Acta ; 1090: 133-142, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31655638

RESUMO

A fluorescent probe for the determination of nitrite (NO2-) was fabricated by using green fluorescent nitrogen doped carbon dots (NCDs). The NCDs were synthesized via a one-pot hydrothermal carbonization of citric acid in the presence of p-phenylenediamine as the nitrogen source. The N content of the NCDs was high to 17.09% and consisted of a variety of functional groups on the NCDs surface, including sp2-hybridized CN, porphyrin C-N-C and amino N in N-(C) 3 or H-N-(C) 2 et al. N atoms were also doped within the framework of the NCDs. The almost monodisperse NCDs (average particle diameter = 3.67 nm) exhibited green photoluminescence (PL) with excitation/emission maxima of 360/505 nm. The PL of the NCDs was dependent on both excitation wavelength and solution pH. The NCDs showed a strong PL quenching response to NO2- under acidic conditions (pH = 2.5). The PL intensity of the NCDs was inversely proportional to the concentration of NO2- between 0.02 and 40 µM (R2 = 0.992), with a detection limit of 21.2 nM. The practical use of the nanoprobe for NO2- determination in food samples was also demonstrated, successfully. NCD-nitroso compounds formed because of reaction between the abundant amide groups on the surface of NCDs with the NO2-, which caused an inner filter effect and static PL quenching. Importantly, the NCDs had low cellular toxicity and were successfully used as a multicolor cellular imaging agent for Hepg2 cells.


Assuntos
Carbono/química , Corantes Fluorescentes/química , Nitritos/análise , Nitrogênio/química , Pontos Quânticos/química , Brassica/química , Carbono/toxicidade , Ácido Cítrico/química , Corantes Fluorescentes/toxicidade , Contaminação de Alimentos/análise , Células Hep G2 , Temperatura Alta , Humanos , Limite de Detecção , Microscopia de Fluorescência/métodos , Nitrogênio/toxicidade , Fenilenodiaminas/química , Pontos Quânticos/toxicidade , Carne Vermelha/análise , Espectrometria de Fluorescência/métodos , Verduras/química
19.
Mycoses ; 62(10): 874-882, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31365770

RESUMO

Cryptococcal meningitis (CM) is one of the most common opportunistic infections of acquired immunodeficiency syndrome (AIDS), as well as an important cause of hospitalisation and death. In recent years, the mortality of CM has remained high in HIV/AIDS population, with up to 30%, including within developed countries. The treatment usually encompasses controls of Cryptococcus, HIV, and increased intracranial pressure. Recent progress on the management of HIV-associated CM mainly centres in optimising induction regimens, looking for appropriate timing of initiating antiretroviral therapy and prevention of symptomatic onset and adverse consequences. This review compared several international guidelines combined with the results from some clinical researches to illustrate the similarities, differences and potential in CM treatment. The present practice is still far from satisfactory, and there remains much to explore due to our limited understanding of the pathogenesis of HIV-associated CM. Thus, screening and monitoring should be strengthened, and better therapies in line with the actual situation of each country should be discovered.


Assuntos
Gerenciamento Clínico , Infecções por HIV/complicações , Meningite Criptocócica/diagnóstico , Meningite Criptocócica/tratamento farmacológico , Guias como Assunto , Humanos
20.
Mikrochim Acta ; 186(8): 516, 2019 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-31280375

RESUMO

Organosilane-functionalized carbon quantum dots (Si-CQDs) were synthesized by reacting glucosamine and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane in acetone. The surface morphology, crystal structure, functional groups, elemental composition, and optical properties of the Si-CQDs were characterized using TEM (HRTEM), XRD, FT-IR, XPS, UV-vis absorption and fluorescence spectroscopy. They show that N-containing groups including C=N and C-N, and Si-containing groups including Si-O-C and Si-O-Si have been formed on the surface of Si-CQDs. The element doping and surface functionalization of Si-CQDs endow their novel chemical, physical and optical properties. The Si-CQDs dispersed in acetone are almost monodisperse with an average particle diameter of 3.6 nm. The Si-CQDs dispersed in acetone display blue fluorescence (excitation/emission maxima of 380/460 nm). In contrast, the solid-state Si-CQDs exhibited yellow fluorescence (with excitation/emission maxima of 470/595 nm). The fluorescence emission spectra of acetone-suspended Si-CQDs are concentration-dependent, and the emission peak becomes red-shifted as the concentration is increased. The Si-CQDs are sensitive and selective fluorescent "on off on" nanoprobes for chromate [Cr(VI)] and ascorbic acid (AA). Fluorescence is quenched by Cr(VI) via an inner filter effect from the absorption of Si-CQDs excitation at 380 nm by Cr(VI). Upon addition of AA, fluorescence is restored because of reduction of Cr(VI) by AA. Under optimal conditions (excitation/emission wavelength of 380/460 nm), the response is linear in the 0.4-160 µM Cr(VI) concentration range, and the detection limit is 34 nM. The respective data for AA are 1-80 µM and 84.6 nM. The practical use of the nanoprobe for Cr(VI) determination in real river water samples is also demonstrated successfully. Their concentration-dependent fluorescence, good thermal stability and self-crosslinking behavior also make the Si-CQDs a candidate material for white light-emitting diodes that displays color conversion and can act as an encapsulation layer in a blue light-emitting diode (LED) chip. Graphical abstract One-pot solvothermal synthesis of organosilane-functionalized carbon quantum dots (Si-CQDs) with blue fluorescence in solution, yellow fluorescence in solid state and concentration-dependent fluorescence property, and their applications for chromate (Cr(VI)) and ascorbic acid dual determinations and white light-emitting device. Graphical Abstract contains poor quality and small text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.We have changed the poor quality graphical abstract into the jpg and pdf.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...