Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0107524, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958447

RESUMO

Yersinia pestis has recently evolved into a highly lethal flea-borne pathogen through the pseudogenization of extensive genes and the acquisition of exogenous plasmids. Particularly noteworthy are the newly acquired pPCP1 and pMT1 plasmids, which encode the virulence determinants Pla and Yersinia murine toxin (Ymt), crucial for subcutaneous infection and survival within flea vector of Y. pestis, respectively. This study reveals that Pla can cleave Ymt at K299 both in vivo and in vitro. Y. pestis expressing YmtK299A displays enhanced in vitro biofilm formation and increased blood survival, indicating significant roles of Pla-mediated Ymt cleavage in these phenotypes. Intriguingly, although both the ancestral form of Pla and the prevalent Pla-I259T variant in modern Y. pestis strains are capable of cleaving Ymt at K299, the cleavage efficiency of Pla-I259T is only half that of the ancestral variant. In subcutaneous infection, mice infected with Δymt::ymt-K299A show significantly prolonged survival compared to those infected with Δymt::ymt. Similarly, infection with Δpla::pla-I259T also results in extended survival compared to Δpla::pla infection. These data demonstrate that the I259T substitution of Pla mitigates the enhanced virulence of Y. pestis in mice caused by Pla-mediated Ymt cleavage, thereby prolonging the survival period of infected animals and potentially conferring advantages on the transmission of Y. pestis to the next host. These findings deepen our understanding of the intricate interplay between two newly acquired plasmids and shed light on the positive selection of the Pla-I259T mutation, providing new insights into the virulence dynamics and transmission mechanisms of Y. pestis. IMPORTANCE: The emergence of Y. pestis as a highly lethal pathogen is driven by extensive gene pseudogenization and acquisition of exogenous plasmids pPCP1 and pMT1. However, the interplay between these two plasmids during evolution remains largely unexplored. Our study reveals intricate interactions between Ymt and Pla, two crucial virulence determinants encoded on these plasmids. Pla-mediated cleavage of Ymt significantly decreases Y. pestis survival in mouse blood and enhances its virulence in mice. The prevalent Pla-I259T variant in modern strains displays reduced Ymt cleavage, thereby extending the survival of infected animals and potentially increasing strain transmissibility. Our findings shed light on the nuanced evolution of Y. pestis, wherein reduced cleavage efficiency is a positive selection force, shaping the pathogen's natural trajectory.

2.
Appl Microbiol Biotechnol ; 108(1): 396, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922447

RESUMO

The human gut microbiota refers to a diverse community of microorganisms that symbiotically exist in the human intestinal system. Altered microbial communities have been linked to many human pathologies. However, there is a lack of rapid and efficient methods to assess gut microbiota signatures in practice. To address this, we established an appraisal system containing 45 quantitative real-time polymerase chain reaction (qPCR) assays targeting gut core microbes with high prevalence and/or abundance in the population. Through comparative genomic analysis, we selected novel species-specific genetic markers and primers for 31 of the 45 core microbes with no previously reported specific primers or whose primers needed improvement in specificity. We comprehensively evaluated the performance of the qPCR assays and demonstrated that they showed good sensitivity, selectivity, and quantitative linearity for each target. The limit of detection ranged from 0.1 to 1.0 pg/µL for the genomic DNA of these targets. We also demonstrated the high consistency (Pearson's r = 0.8688, P < 0.0001) between the qPCR method and metagenomics next-generation sequencing (mNGS) method in analyzing the abundance of selected bacteria in 22 human fecal samples. Moreover, we quantified the dynamic changes (over 8 weeks) of these core microbes in 14 individuals using qPCR, and considerable stability was demonstrated in most participants, albeit with significant individual differences. Overall, this study enables the simple and rapid quantification of 45 core microbes in the human gut, providing a promising tool to understand the role of gut core microbiota in human health and disease. KEY POINTS: • A panel of original qPCR assays was developed to quantify human gut core microbes. • The qPCR assays were evaluated and compared with mNGS using real fecal samples. • This method was used to dynamically profile the gut core microbiota in individuals.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , Reação em Cadeia da Polimerase em Tempo Real , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sensibilidade e Especificidade , Primers do DNA/genética , DNA Bacteriano/genética
3.
Yi Chuan ; 46(2): 140-148, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340004

RESUMO

As a key supporting technology in the fields of life sciences and medicine, high-throughput sequencing has developed rapidly and become increasingly mature. The workflow of this technology can be divided into nucleic acid extraction, library construction, sequencing, and data analysis. Among these, library construction is a pivotal step that bridges the previous and subsequent stages. The effectiveness of library construction is contingent on the quality of upstream samples and also impacts the data analysis following sequence data output. The selection and implementation of library construction quality control techniques are crucial for enhancing the reliability of results and reducing errors in sequencing data. This review provides an in-depth discussion of library construction quality control techniques, summarizing and evaluating their principles, advantages and disadvantages, and applicability. It also discusses the selection of relevant technologies in practical application scenarios. The aim is to offer theoretical foundations and references for researchers, disease prevention and control personnel, and others when choosing library quality control techniques, thereby promoting the quality and efficiency of high-throughput sequencing work.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reprodutibilidade dos Testes , Biblioteca Gênica , Clonagem Molecular , Controle de Qualidade , Análise de Sequência de DNA/métodos
4.
Phytomedicine ; 125: 155312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232541

RESUMO

BACKGROUND: Cerebral ischemia has the characteristics of high incidence, mortality, and disability, which seriously damages people's health. Cerebral ischemia-reperfusion injury is the key pathological injury of this disease. However, there is a lack of drugs that can reduce cerebral ischemia-reperfusion injury in clinical practice. At present, a few studies have provided some evidence that nuciferine can reduce cerebral ischemia-reperfusion injury, but its specific mechanism of action is still unclear, and further research is still needed. OBJECTIVE: In this study, PC12 cells and SD rats were used to construct OGD/R and MCAO/R models, respectively. Combined with bioinformatics methods and experimental verification methods, the purpose of this study was to conduct a systematic and comprehensive study on the effect and mechanism of nuciferine on reducing inflammation induced by cerebral ischemia-reperfusion injury. RESULTS: Nuciferine can improve the cell viability of PC12 cells induced by OGD/R, reduce apoptosis, and reduce the expression of inflammation-related proteins; it can also improve the cognitive and motor dysfunction of MCAO/R-induced rats by behavioral tests, reduce the area of cerebral infarction, reduce the release of inflammatory factors TNF-α and IL-6 in serum and the expression of inflammation-related proteins in brain tissue. CONCLUSION: Nuciferine can reduce the inflammatory level of cerebral ischemia-reperfusion injury in vivo and in vitro models by acting on the PI3K/Akt/NF-κB signaling pathway, and has the potential to be developed as a drug for the treatment of cerebral ischemia-reperfusion injury.


Assuntos
Aporfinas , Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Infarto da Artéria Cerebral Média/patologia , Isquemia Encefálica/patologia , Inflamação/metabolismo , Traumatismo por Reperfusão/metabolismo
5.
Front Cell Infect Microbiol ; 13: 1288371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089818

RESUMO

Yersinia pestis, the causative agent of plague, is a genetically monomorphic bacterial pathogen that evolved from Yersinia pseudotuberculosis approximately 7,400 years ago. We observed unusually frequent mutations in Y. pestis YPO0623, mostly resulting in protein translation termination, which implies a strong natural selection. These mutations were found in all phylogenetic lineages of Y. pestis, and there was no apparent pattern in the spatial distribution of the mutant strains. Based on these findings, we aimed to investigate the biological function of YPO0623 and the reasons for its frequent mutation in Y. pestis. Our in vitro and in vivo assays revealed that the deletion of YPO0623 enhanced the growth of Y. pestis in nutrient-rich environments and led to increased tolerance to heat and cold shocks. With RNA-seq analysis, we also discovered that the deletion of YPO0623 resulted in the upregulation of genes associated with the type VI secretion system (T6SS) at 26°C, which probably plays a crucial role in the response of Y. pestis to environment fluctuations. Furthermore, bioinformatic analysis showed that YPO0623 has high homology with a PLP-dependent aspartate aminotransferase in Salmonella enterica, and the enzyme activity assays confirmed its aspartate aminotransferase activity. However, the enzyme activity of YPO0623 was significantly lower than that in other bacteria. These observations provide some insights into the underlying reasons for the high-frequency nonsense mutations in YPO0623, and further investigations are needed to determine the exact mechanism.


Assuntos
Aspartato Aminotransferases , Peste , Yersinia pestis , Códon sem Sentido/metabolismo , Filogenia , Peste/microbiologia , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/genética
6.
J Med Virol ; 95(12): e29278, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088537

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and cocirculate in humans and wild animals. The factors driving the emergence and replacement of novel variants and recombinants remain incompletely understood. Herein, we comprehensively characterized the competitive fitness of SARS-CoV-2 wild type (WT) and three variants of concern (VOCs), Alpha, Beta and Delta, by coinfection and serial passaging assays in different susceptible cells. Deep sequencing analyses revealed cell-specific competitive fitness: the Beta variant showed enhanced replication fitness during serial passage in Caco-2 cells, whereas the WT and Alpha variant showed elevated fitness in Vero E6 cells. Interestingly, a high level of neutralizing antibody sped up competition and completely reshaped the fitness advantages of different variants. More importantly, single clone purification identified a significant proportion of homologous recombinants that emerged during the passage history, and immune pressure reduced the frequency of recombination. Interestingly, a recombination hot region located between nucleotide sites 22,995 and 28,866 of the viral genomes could be identified in most of the detected recombinants. Our study not only profiled the variable competitive fitness of SARS-CoV-2 under different conditions, but also provided direct experimental evidence of homologous recombination between SARS-CoV-2 viruses, as well as a model for investigating SARS-CoV-2 recombination.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Células CACO-2 , Recombinação Homóloga , Glicoproteína da Espícula de Coronavírus
7.
Microorganisms ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38004812

RESUMO

The bacterium Yersinia pestis has developed various strategies to sense and respond to the complex stresses encountered during its transmission and pathogenic processes. PurR is a common transcriptional regulator of purine biosynthesis among microorganisms, and it modulates the transcription level of the pur operon to suppress the production of hypoxanthine nucleotide (IMP). This study aims to understand the functions and regulatory mechanisms of purR in Y. pestis. Firstly, we constructed a purR knockout mutant of Y. pestis strain 201 and compared certain phenotypes of the null mutant (201-ΔpurR) and the wild-type strain (201-WT). The results show that deleting purR has no significant impact on the biofilm formation, growth rate, or viability of Y. pestis under different stress conditions (heat and cold shock, high salinity, and hyperosmotic pressure). Although the cytotoxicity of the purR knockout mutant on HeLa and 293 cells is reduced, the animal-challenging test found no difference of the virulence in mice between 201-ΔpurR and 201-WT. Furthermore, RNA-seq and EMSA analyses demonstrate that PurR binds to the promoter regions of at least 15 genes in Y. pestis strain 201, primarily involved in purine biosynthesis, along with others not previously observed in other bacteria. Additionally, RNA-seq results suggest the presence of 11 potential operons, including a newly identified co-transcriptional T6SS cluster. Thus, aside from its role as a regulator of purine biosynthesis, purR in Y. pestis may have additional regulatory functions.

8.
Bioinform Adv ; 3(1): vbad115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745000

RESUMO

Motivation: High-resolution target pathogen detection using metagenomic sequencing data represents a major challenge due to the low concentration of target pathogens in samples. We introduced mStrain, a novel Yesinia pestis strain/lineage-level identification tool that utilizes metagenomic data. mStrain successfully identified Y. pestis at the strain/lineage level by extracting sufficient information regarding single-nucleotide polymorphisms (SNPs), which can therefore be an effective tool for identification and source tracking of Y. pestis based on metagenomic data during a plague outbreak. Definition: . Strain-level identification: Assigning the reads in the metagenomic sequencing data to an exactly known or most closely representative Y. pestis strain. Lineage-level identification: Assigning the reads in the metagenomic sequencing data to a specific lineage on the phylogenetic tree. canoSNPs: The unique and typical SNPs present in all representative strains. Ancestor/derived state: An SNP is defined as the ancestor state when consistent with the allele of Yersinia pseudotuberculosis strain IP32953; otherwise, the SNP is defined as the derived state. Availability and implementation: The code for running mStrain, the test dataset, and instructions for running the code can be found at the following GitHub repository: https://github.com/xwqian1123/mStrain.

9.
PLoS Negl Trop Dis ; 17(8): e0011527, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549110

RESUMO

Plague, one of the most devastating infectious diseases in human history, is caused by the bacterium Yersinia pestis. Since the 1950s, the Dehong Dai-Jingpo Autonomous Prefecture (DH) in Yunnan Province, China, has recorded plague outbreaks that have resulted in 1,153 human cases and 379 deaths. The genetic diversity and transmission characteristics of Y. pestis strains in this region remain unknown. Here, we performed high-resolution genomic epidemiological analysis of 175 Y. pestis strains isolated from five counties and 19 towns in DH between 1953 and 2007. Phylogenetic analysis revealed that most DH strains were located in lineage 1.ORI2, which could be further subdivided into seven sub-phylogroups (SPG1-SPG7). The dominant sub-phylogroups of Y. pestis in DH varied during different periods and presented a population shift. Genomic evidence showed that plague might have emerged from the southwest of DH (e.g., Longchuan or Ruili counties) or its bordering countries, and subsequently spread to the northeast in multiple waves between 1982 and 2007. Our study infers a fine-scale phylogeny and spread pattern of the DH Y. pestis population, which extends our knowledge regarding its genetic diversity and provides clues for the future prevention and control of plague in this region.


Assuntos
Peste , Yersinia pestis , Humanos , Peste/epidemiologia , Peste/microbiologia , Filogenia , China/epidemiologia , Genômica
10.
Artigo em Inglês | MEDLINE | ID: mdl-37602146

RESUMO

Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.

11.
Commun Biol ; 6(1): 847, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582843

RESUMO

Plague, caused by Yersinia pestis, is a zoonotic disease that can reemerge and cause outbreaks following decades of latency in natural plague foci. However, the genetic diversity and spread pattern of Y. pestis during these epidemic-silent cycles remain unclear. In this study, we analyze 356 Y. pestis genomes isolated between 1952 and 2016 in the Yunnan Rattus tanezumi plague focus, China, covering two epidemic-silent cycles. Through high-resolution genomic epidemiological analysis, we find that 96% of Y. pestis genomes belong to phylogroup 1.ORI2 and are subdivided into two sister clades (Sublineage1 and Sublineage2) characterized by different temporal-spatial distributions and genetic diversity. Most of the Sublineage1 strains are isolated from the first epidemic-silent cycle, while Sublineage2 strains are predominantly from the second cycle and revealing a west to east spread. The two sister clades evolved in parallel from a common ancestor and independently lead to two separate epidemics, confirming that the pathogen responsible for the second epidemic following the silent interval is not a descendant of the causative strain of the first epidemic. Our results provide a mechanism for defining epidemic-silent cycles in natural plague foci, which is valuable in the prevention and control of future plague outbreaks.


Assuntos
Epidemias , Peste , Yersinia pestis , Animais , Ratos , Peste/epidemiologia , Yersinia pestis/genética , China/epidemiologia , Genótipo , Genômica
12.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375352

RESUMO

Neuronal injury and apoptosis are important causes of the occurrence and development of many neurodegenerative diseases, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Although the detailed mechanism of some diseases is unknown, the loss of neurons in the brain is still the main pathological feature. By exerting the neuroprotective effects of drugs, it is of great significance to alleviate the symptoms and improve the prognosis of these diseases. Isoquinoline alkaloids are important active ingredients in many traditional Chinese medicines. These substances have a wide range of pharmacological effects and significant activity. Although some studies have suggested that isoquinoline alkaloids may have pharmacological activities for treating neurodegenerative diseases, there is currently a lack of a comprehensive summary regarding their mechanisms and characteristics in neuroprotection. This paper provides a comprehensive review of the active components found in isoquinoline alkaloids that have neuroprotective effects. It thoroughly explains the various mechanisms behind the neuroprotective effects of isoquinoline alkaloids and summarizes their common characteristics. This information can serve as a reference for further research on the neuroprotective effects of isoquinoline alkaloids.


Assuntos
Alcaloides , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Isoquinolinas/farmacologia
13.
Infect Genet Evol ; 112: 105441, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37146742

RESUMO

Diarrheal cases caused by non-toxigenic Vibrio cholerae have been reported globally. Lineages L3b and L9, characterized as ctxAB-negative and tcpA-positive (CNTP), pose the highest risk and have caused long-term epidemics in different regions worldwide. From 2001 to 2018, two waves (2001-2012 and 2013-2018) of epidemic caused by non-toxigenic V. cholerae occurred in the developed city of Hangzhou, China. In this study, through the integrated analysis of 207 genomes of Hangzhou isolates from these two waves (119 and 88) and 1573 publicly available genomes, we showed that L3b and L9 lineages together caused the second wave as had happened in the first wave, but the dominant lineage shifted from L3b (first wave: 69%) to L9 (second wave: 50%). We further found that the genotype of a key virulence gene, tcpF, in the L9 lineage during the second wave shifted to type I, which may have enhanced bacterial colonization in humans and potentially promoted the pathogenic lineage shift. Moreover, we found that 21% of L3b and L9 isolates had changed to predicted cholera toxin producers, providing evidence that gain of complete CTXφ-carrying ctxAB genes, rather than ctxAB gain in pre-CTXφ-carrying isolates, led to the transition. Taken together, our findings highlight the possible public health risk associated with L3b and L9 lineages due to their potential to cause long-term epidemics and turn into high-virulent cholera toxin producers, which necessitates a more comprehensive and unbiased sampling in further disease control efforts.


Assuntos
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Toxina da Cólera/genética , Metagenômica , Saúde Pública , Virulência , Cólera/epidemiologia , Cólera/microbiologia
14.
Nat Commun ; 13(1): 4526, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927280

RESUMO

Plague has caused three worldwide pandemics in history, including the Black Death in medieval ages. Yersinia pestis, the etiological agent of plague, has evolved a powerful arsenal to disrupt host immune defenses during evolution from enteropathogenic Y. pseudotuberculosis. Here, we find that two functionally redundant E3 ligase of Y. pestis, YspE1 and YspE2, can be delivered via type III secretion injectisome into host cytosol where they ubiquitinate multiple guanylate-binding proteins (GBPs) for proteasomal degradation. However, Y. pseudotuberculosis has no such capability due to lacking functional YspE1/2 homologs. YspE1/2-mediated GBP degradations significantly promote the survival of Y. pestis in macrophages and strongly inhibit inflammasome activation. By contrast, Gbpchr3-/-, chr5-/- macrophages exhibit much lowered inflammasome activation independent of YspE1/2, accompanied with an enhanced replication of Y. pestis. Accordingly, Gbpchr3-/-, chr5-/- mice are more susceptible to Y. pestis. We demonstrate that Y. pestis utilizes E3 ligases to subvert GBP-mediated host defense, which appears to be newly acquired by Y. pestis during evolution.


Assuntos
Peste , Yersinia pestis , Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Animais , Inflamassomos/metabolismo , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/metabolismo
15.
Nat Microbiol ; 7(8): 1221-1229, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35918422

RESUMO

Controlling foodborne diseases requires robust outbreak detection and a comprehensive understanding of outbreak dynamics. Here, by integrating large-scale phylogenomic analysis of 3,642 isolates and epidemiological data, we performed 'data-driven' outbreak detection and described the long-term outbreak dynamics of the leading seafood-associated pathogen, Vibrio parahaemolyticus, in Shenzhen, China, over a 17-year period. Contradictory to the widely accepted notion that sporadic patients and independent point-source outbreaks dominated foodborne infections, we found that 71% of isolates from patients grouped into within-1-month clusters that differed by ≤6 single nucleotide polymorphisms, indicating putative outbreaks. Furthermore, we showed that despite the long time spans between clusters, 70% of them were genomically closely related and were inferred to arise from a small number of common sources, which provides evidence that hidden persistent reservoirs generated most of the outbreaks rather than independent point-sources. Phylogeographical analysis further revealed the geographical heterogeneity of outbreaks and identified a coastal district as the potential hotspot of outbreaks and as the hub and major source of cross-district spread events. Our findings provide a comprehensive picture of the long-term spatiotemporal dynamics of foodborne outbreaks and present a different perspective on the major source of foodborne infections, which will inform the design of future disease control strategies.


Assuntos
Doenças Transmitidas por Alimentos , Vibrioses , Vibrio parahaemolyticus , Surtos de Doenças , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Filogenia , Vibrioses/epidemiologia , Vibrio parahaemolyticus/genética
16.
Front Microbiol ; 13: 772489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602015

RESUMO

On September 21, 2019, the Shenzhen and Dongguan Centers for Disease Control and Prevention received notification of a large cluster of suspected gastroenteritis involving primarily children who sought medical care at hospitals throughout two adjacent cities in China, Shenzhen, and Dongguan. A joint outbreak response was promptly initiated across jurisdictions in a concerted effort between clinical microbiologists, epidemiologists, and public health scientists. Concurrently, multiplex PCRs were used for rapid laboratory diagnosis of suspected cases; epidemiological investigations were conducted to identify the outbreak source, complemented by near real-time multicenter whole-genome analyses completed within 34 h. Epidemiological evidence indicated that all patients had consumed egg sandwiches served on September 20 as snacks to children and staff at a nursery in Dongguan, located near Shenzhen. Salmonella Enteritidis was isolated from case-patients, food handlers, kitchenware, and sandwiches with kitchen-made mayonnaise. Whole-genome single-nucleotide polymorphism (SNP)-based phylogenetic analysis demonstrated a well-supported cluster with pairwise distances of ≤1 SNP between genomes for outbreak-associated isolates, providing the definitive link between all samples. In comparison with historical isolates from the same geographical region, the minimum pairwise distance was >14 SNPs, suggesting a non-local outbreak source. Genomic source tracing revealed the possible transmission dynamics of a S. Enteritidis clone throughout a multi-provincial egg distribution network. The efficiency and scale with which multidisciplinary and integrated approaches were coordinated in this foodborne disease outbreak response was unprecedented in China, leading to the timely intervention of a large cross-jurisdiction Salmonella outbreak.

17.
Microbiol Spectr ; 10(3): e0224221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35438532

RESUMO

The life cycle of Yersinia pestis has changed a lot to adapt to flea-borne transmission since it evolved from an enteric pathogen, Yersinia pseudotuberculosis. Small insertions and deletions (indels), especially frameshift mutations, can have major effects on phenotypes and contribute to virulence and host adaptation through gene disruption and inactivation. Here, we analyzed 365 Y. pestis genomes and identified 2,092 genome-wide indels on the core genome. As recently reported in Mycobacterium tuberculosis, we also detected "indel pockets" in Y. pestis, with average complexity scores declining around indel positions, which we speculate might also exist in other prokaryotes. Phylogenic analysis showed that indel-based phylogenic tree could basically reflect the phylogenetic relationships of major phylogroups in Y. pestis, except some inconsistency around the Big Bang polytomy. We observed 83 indels arising in the trunk of the phylogeny, which played a role in accumulation of pseudogenes related to key metabolism and putatively pathogenicity. We also discovered 32 homoplasies at the level of phylogroups and 7 frameshift scars (i.e., disrupted reading frame being rescued by a second frameshift). Additionally, our analysis showed evidence of parallel evolution at the level of genes, with sspA, rpoS, rnd, and YPO0624, having enriched mutations in Brazilian isolates, which might be advantageous for Y. pestis to cope with fluctuating environments. The diversified selection signals observed here demonstrates that indels are important contributors to the adaptive evolution of Y. pestis. Meanwhile, we provide potential targets for further exploration, as some genes/pseudogenes with indels we focus on remain uncharacterized. IMPORTANCE Yersinia pestis, the causative agent of plague, is a highly pathogenic clone of Yersinia pseudotuberculosis. Previous genome-wide SNP analysis provided few adaptive signatures during its evolution. Here by investigating 365 public genomes of Y. pestis, we give a comprehensive overview of general features of genome-wide indels on the core genome and their roles in Y. pestis evolution. Detection of "indel pockets," with average complexity scores declining around indel positions, in both Mycobacterium tuberculosis and Y. pestis, gives us a clue that this phenomenon might appear in other bacterial genomes. Importantly, the identification of four different forms of selection signals in indels would improve our understanding on adaptive evolution of Y. pestis, and provide targets for further physiological mechanism researches of this pathogen. As evolutionary research based on genome-wide indels is still rare in bacteria, our study would be a helpful reference in deciphering the role of indels in other species.


Assuntos
Evolução Molecular , Yersinia pestis , Yersinia pseudotuberculosis , Genoma Bacteriano , Genômica , Mutação INDEL , Filogenia , Yersinia pestis/genética , Yersinia pseudotuberculosis/genética
18.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212619

RESUMO

Vibrio fluvialis is a food-borne pathogen with epidemic potential that causes cholera-like acute gastroenteritis and sometimes extraintestinal infections in humans. However, research on its genetic diversity and pathogenicity-related genetic elements based on whole genome sequences is lacking. In this study, we collected and sequenced 130 strains of V. fluvialis from 14 provinces of China, and also determined the susceptibility of 35 of the strains to 30 different antibiotics. Combined with 52 publicly available V. fluvialis genomes, we inferred the population structure and investigated the characteristics of pathogenicity-related factors. The V. fluvialis strains exhibited high levels of homologous recombination and were assigned to two major populations, VflPop1 and VflPop2, according to the different compositions of their gene pools. VflPop2 was subdivided into groups 2.1 and 2.2. Except for VflPop2.2, which consisted only of Asian strains, the strains in VflPop1 and VflPop2.1 were distributed in the Americas, Asia and Europe. Analysis of the pathogenicity potential of V. fluvialis showed that most of the identified virulence-related genes or gene clusters showed high prevalence in V. fluvialis, except for three mobile genetic elements: pBD146, ICEVflInd1 and MGIVflInd1, which were scattered in only a few strains. A total of 21 antimicrobial resistance genes were identified in the genomes of the 182 strains analysed in this study, and 19 (90%) of them were exclusively present in VflPop2. Notably, the tetracycline resistance-related gene tet(35) was present in 150 (95%) of the strains in VflPop2, and in only one (4%) strain in VflPop1, indicating it was population-specific. In total, 91% of the 35 selected strains showed resistance to cefazolin, indicating V. fluvialis has a high resistance rate to cefazolin. Among the 15 genomes that carried the previously reported drug resistance-related plasmid pBD146, 11 (73%) showed resistance to trimethoprim-sulfamethoxazole, which we inferred was related to the presence of the dfr6 gene in the plasmid. On the basis of the population genomics analysis, the genetic diversity, population structure and distribution of pathogenicity-related factors of V. fluvialis were delineated in this study. The results will provide further clues regarding the evolution and pathogenic mechanisms of V. fluvialis, and improve our knowledge for the prevention and control of this pathogen.


Assuntos
Metagenômica , Vibrio , Antibacterianos/farmacologia , Cefazolina , Humanos , Vibrio/genética , Virulência/genética , Fatores de Virulência/genética
19.
Emerg Microbes Infect ; 11(1): 648-661, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35086435

RESUMO

Colistin is regarded as a last-resort agent to combat infections caused by multidrug-resistant (MDR) Gram-negative bacteria, especially carbapenem-resistant isolates. In recent years, reports of colistin-resistant Klebsiella pneumoniae (CoRKp) are increasing. However, the molecular mechanism and relevance of colistin resistance and virulence remain unclear. Fourteen CoRKp strains were retrospectively screened from 1884 clinical K. pneumoniae isolates during 2017-2018 in China. Six CoRKp strains belonging to ST11 were MDR strains. Plasmid-mediated mobile colistin-resistance genes had a low prevalence in CoRKp. Our results revealed that up-regulated expression of two-component systems, especially phoPQ, contributed more to colistin resistance. mgrB mutation was the most common molecular mechanism of colistin resistance, caused by either nonsense mutations or insertion sequences, which drove the overexpression of phoPQ system. This study also identified three novel point mutations in pmrAB system, in which D313N mutation in pmrB was proved to increase the MIC to colistin by 16-fold. In addition, 6 out of 14 CoRKP strains independently carried hypervirulence genes. All six strains showed medium-to-high virulence phenotype compared with NTUH-K2044 strain in mice intraperitoneal challenge models. We found that 4 strains were biofilm strong producers and transcriptome analysis revealed that three of them significantly up-regulated expression of type III fimbrial shaft gene mrkA. In conclusion, our result revealed the emergence of colistin-resistant and hypervirulent MDR K. pneumoniae, which is a noticeable superbug and could cause a severe challenge to public health.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Klebsiella/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , beta-Lactamases/genética
20.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762026

RESUMO

Burkholderia pseudomallei is a Gram-negative soil-dwelling bacillus that causes melioidosis, a frequently fatal infectious disease, in tropical and subtropical regions. Previous studies have identified the overall genetic and evolutionary characteristics of B. pseudomallei on a global scale, including its origin and transmission routes. However, beyond its known hyperendemicity foci in northern Australia and Southeast Asia, the distribution and genetic characteristics of B. pseudomallei in most tropical regions remain poorly understood, including in southern China. Here, we sequenced the genomes of 122 B. pseudomallei strains collected from Hainan, an island in southern China, in 2002-2018, to investigate the population structure, relationships with global strains, local epidemiology, and virulence and antimicrobial-resistance factors. A phylogenetic analysis and hierarchical clustering divided the Hainan strains into nine phylogenic groups (PGs), 80 % of which were concentrated within five major groups (group 1: corresponding to minor sequence types [STs], 12.3 %; group 3: ST46 and ST50, 31.1 %; group 9: ST58, 13.1 %; group 11: ST55, 8.2 %; group 15: mainly ST658, 15.6%). A phylogenetic analysis that included global strains suggested that B. pseudomallei in Hainan originated from Southeast Asian countries, transmitted in multiple historical importation events. We also identified several mutual transmission events between Hainan and Southeast Asian countries in recent years, including three importation events from Thailand and Singapore to Hainan and three exportation events from Hainan to Singapore, Malaysia, and Taiwan island. A statistical analysis of the temporal distribution showed that the Hainan strains of groups 3, 9, and 15 have dominated the disease epidemic locally in the last 5 years. The spatial distribution of the Hainan strains demonstrated that some PGs are distributed in different cities on Hainan island, and by combining phylogenic and geographic distribution information, we detected 21 between-city transmission events, indicating its frequent local transmission. The detection of virulence factor genes showed that 56 % of the Hainan strains in group 1 encode a B. pseudomallei-specific adherence factor, boaB, confirming the specific pathogenic characteristics of the Hainan strains in group 1. An analysis of the antimicrobial-resistance potential of B. pseudomallei showed that various kinds of alterations were identified in clinically relevant antibiotic resistance factors, such as AmrR, PenA and PBP3, etc. Our results clarify the population structure, local epidemiology, and pathogenic characteristics of B. pseudomallei in Hainan, providing further insight into its regional and global transmission networks and improving our knowledge of its global phylogeography.


Assuntos
Burkholderia pseudomallei , China/epidemiologia , Variação Genética , Metagenômica , Tipagem de Sequências Multilocus/métodos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...