Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(6): e1009475, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34107000

RESUMO

Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse's ability to transmit trypanosomes by strengthening the fly's natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse's PM in order to establish an infection in the fly, and PM structural integrity negatively correlates with trypanosome infection outcomes. Bloodstream form trypanosomes shed variant surface glycoproteins (VSG) into tsetse's gut lumen early during the infection establishment, and free VSG molecules are internalized by the fly's PM-producing cardia. This process results in a reduction in the expression of a tsetse microRNA (miR275) and a sequential molecular cascade that compromises PM integrity. miRNAs are small non-coding RNAs that are critical in regulating many physiological processes. In the present study, we investigated the role(s) of tsetse miR275 by developing a paratransgenic expression system that employs tsetse's facultative bacterial endosymbiont, Sodalis glossinidius, to express tandem antagomir-275 repeats (or miR275 sponges). This system induces a constitutive, 40% reduction in miR275 transcript abundance in the fly's midgut and results in obstructed blood digestion (gut weights increased by 52%), a significant increase (p-value < 0.0001) in fly survival following infection with an entomopathogenic bacteria, and a 78% increase in trypanosome infection prevalence. RNA sequencing of cardia and midgut tissues from paratransgenic tsetse confirmed that miR275 regulates processes related to the expression of PM-associated proteins and digestive enzymes as well as genes that encode abundant secretory proteins. Our study demonstrates that paratransgenesis can be employed to study microRNA regulated pathways in arthropods that house symbiotic bacteria.


Assuntos
Homeostase/fisiologia , Intestinos/fisiologia , MicroRNAs/genética , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/parasitologia , Animais , Animais Geneticamente Modificados , Microbioma Gastrointestinal/fisiologia , Genes de Insetos , Insetos Vetores/genética , Insetos Vetores/parasitologia , Trypanosoma
2.
mBio ; 10(3)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164458

RESUMO

Many symbionts supplement their host's diet with essential nutrients. However, whether these nutrients also enhance parasitism is unknown. In this study, we investigated whether folate (vitamin B9) production by the tsetse fly (Glossina spp.) essential mutualist, Wigglesworthia, aids auxotrophic African trypanosomes in completing their life cycle within this obligate vector. We show that the expression of Wigglesworthia folate biosynthesis genes changes with the progression of trypanosome infection within tsetse. The disruption of Wigglesworthia folate production caused a reduction in the percentage of flies that housed midgut (MG) trypanosome infections. However, decreased folate did not prevent MG trypanosomes from migrating to and establishing an infection in the fly's salivary glands, thus suggesting that nutrient requirements vary throughout the trypanosome life cycle. We further substantiated that trypanosomes rely on symbiont-generated folate by feeding this vitamin to Glossina brevipalpis, which exhibits low trypanosome vector competency and houses Wigglesworthia incapable of producing folate. Folate-supplemented G. brevipalpis flies were significantly more susceptible to trypanosome infection, further demonstrating that this vitamin facilitates parasite infection establishment. Our cumulative results provide evidence that Wigglesworthia provides a key metabolite (folate) that is "hijacked" by trypanosomes to enhance their infectivity, thus indirectly impacting tsetse species vector competency. Parasite dependence on symbiont-derived micronutrients, which likely also occurs in other arthropod vectors, represents a relationship that may be exploited to reduce disease transmission.IMPORTANCE Parasites elicit several physiological changes in their host to enhance transmission. Little is known about the functional association between parasitism and microbiota-provisioned resources typically dedicated to animal hosts and how these goods may be rerouted to optimize parasite development. This study is the first to identify a specific symbiont-generated metabolite that impacts insect vector competence by facilitating parasite establishment and, thus, eventual transmission. Specifically, we demonstrate that the tsetse fly obligate mutualist Wigglesworthia provisions folate (vitamin B9) that pathogenic African trypanosomes exploit in an effort to successfully establish an infection in the vector's MG. This process is essential for the parasite to complete its life cycle and be transmitted to a new vertebrate host. Disrupting metabolic contributions provided by the microbiota of arthropod disease vectors may fuel future innovative control strategies while also offering minimal nontarget effects.


Assuntos
Ácido Fólico/biossíntese , Simbiose , Trypanosoma/fisiologia , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Wigglesworthia/metabolismo , Animais , Vias Biossintéticas , Feminino , Trato Gastrointestinal/parasitologia , Interações Hospedeiro-Parasita , Masculino
4.
PLoS Pathog ; 15(2): e1007470, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817773

RESUMO

Tsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether Kosakonia cowanii Zambiae (Kco_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Kco_Z established stable infections in tsetse's gut and exhibited no adverse effect on the fly's survival. Flies with established Kco_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Kco_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Kco_Z acidifies tsetse's midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Kco_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Kco_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes.


Assuntos
Trypanosoma brucei brucei/patogenicidade , Trypanosoma congolense/patogenicidade , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Adulto , África Subsaariana , Animais , Anopheles/microbiologia , Enterobacteriaceae , Feminino , Humanos , Masculino , Mosquitos Vetores/microbiologia , Mosquitos Vetores/parasitologia , Simbiose , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/microbiologia , Tripanossomíase Africana/parasitologia
5.
PLoS Pathog ; 14(4): e1006972, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29614112

RESUMO

Arthropod vectors have multiple physical and immunological barriers that impede the development and transmission of parasites to new vertebrate hosts. These barriers include the peritrophic matrix (PM), a chitinous barrier that separates the blood bolus from the midgut epithelia and modulates vector-pathogens interactions. In tsetse flies, a sleeve-like PM is continuously produced by the cardia organ located at the fore- and midgut junction. African trypanosomes, Trypanosoma brucei, must bypass the PM twice; first to colonize the midgut and secondly to reach the salivary glands (SG), to complete their transmission cycle in tsetse. However, not all flies with midgut infections develop mammalian transmissible SG infections-the reasons for which are unclear. Here, we used transcriptomics, microscopy and functional genomics analyses to understand the factors that regulate parasite migration from midgut to SG. In flies with midgut infections only, parasites fail to cross the PM as they are eliminated from the cardia by reactive oxygen intermediates (ROIs)-albeit at the expense of collateral cytotoxic damage to the cardia. In flies with midgut and SG infections, expression of genes encoding components of the PM is reduced in the cardia, and structural integrity of the PM barrier is compromised. Under these circumstances trypanosomes traverse through the newly secreted and compromised PM. The process of PM attrition that enables the parasites to re-enter into the midgut lumen is apparently mediated by components of the parasites residing in the cardia. Thus, a fine-tuned dialogue between tsetse and trypanosomes at the cardia determines the outcome of PM integrity and trypanosome transmission success.


Assuntos
Cárdia/parasitologia , Insetos Vetores , Trypanosoma/patogenicidade , Tripanossomíase/transmissão , Moscas Tsé-Tsé/parasitologia , Animais , Cárdia/imunologia , Trato Gastrointestinal/parasitologia , Glândulas Salivares/parasitologia , Tripanossomíase/imunologia , Moscas Tsé-Tsé/imunologia
6.
Parasit Vectors ; 10(1): 614, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258576

RESUMO

BACKGROUND: Tsetse flies (Glossina spp.) are the prominent vector of African trypanosome parasites (Trypanosoma spp.) in sub-Saharan Africa, and Glossina pallidipes is the most widely distributed species in Kenya. This species displays strong resistance to infection by parasites, which are typically eliminated in the midgut shortly after acquisition from the mammalian host. Although extensive molecular information on immunity for the related species Glossina morsitans morsitans exists, similar information is scarce for G. pallidipes. METHODS: To determine temporal transcriptional responses of G. pallidipes to Trypanosoma brucei brucei challenge, we conducted Illumina based RNA-seq on midgut organ and carcass from teneral females G. pallidipes at 24 and 48 h post-challenge (hpc) with T. b. brucei relative to their respective controls that received normal blood meals (without the parasite). We used a suite of bioinformatics tools to determine differentially expressed and enriched transcripts between and among tissues, and to identify expanded transcripts in G. pallidipes relative to their orthologs G. m. morsitans. RESULTS: Midgut transcripts induced at 24 hpc encoded proteins were associated with lipid remodelling, proteolysis, collagen metabolism, apoptosis, and cell growth. Midgut transcripts induced at 48 hpc encoded proteins linked to embryonic growth and development, serine endopeptidases and proteosomal degradation of the target protein, mRNA translation and neuronal development. Temporal expression of immune responsive transcripts at 48 relative to 24 hpc was pronounced, indicative of a gradual induction of host immune responses the following challenge. We also searched for G. m. morsitans orthologous groups that may have experienced expansions in the G. pallidipes genome. We identified ten expanded groups in G. pallidipes with putative immunity-related functions, which may play a role in the higher refractoriness exhibited by this species. CONCLUSIONS: There appears to be a lack of strong immune responses elicited by gut epithelia of teneral adults. This in combination with a compromised peritrophic matrix at this stage during the initial phase of T. b. brucei challenge may facilitate the increased parasite infection establishment noted in teneral flies relative to older adults. Although teneral flies are more susceptible than older adults, the majority of tenerals are still able to eliminate parasite infections. Hence, robust responses elicited at a later time point, such as 72 hpc, may clear parasite infections from the majority of flies. The expanded G. m. morsitans orthologous groups in G. pallidipes may also be functionally associated with the enhanced refractoriness to trypanosome infections reported in G. pallidipes relative to G. m. morsitans.


Assuntos
Trypanosoma brucei brucei/imunologia , Moscas Tsé-Tsé/parasitologia , Animais , Feminino , Perfilação da Expressão Gênica , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Análise de Sequência de RNA
7.
PLoS Negl Trop Dis ; 11(11): e0006057, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29155830

RESUMO

Tsetse flies (Glossina spp.) transmit parasitic African trypanosomes (Trypanosoma spp.), including Trypanosoma congolense, which causes animal African trypanosomiasis (AAT). AAT detrimentally affects agricultural activities in sub-Saharan Africa and has negative impacts on the livelihood and nutrient availability for the affected communities. After tsetse ingests an infectious blood meal, T. congolense sequentially colonizes the fly's gut and proboscis (PB) organs before being transmitted to new mammalian hosts during subsequent feedings. Despite the importance of PB in blood feeding and disease transmission, little is known about its molecular composition, function and response to trypanosome infection. To bridge this gap, we used RNA-seq analysis to determine its molecular characteristics and responses to trypanosome infection. By comparing the PB transcriptome to whole head and midgut transcriptomes, we identified 668 PB-enriched transcripts that encoded proteins associated with muscle tissue, organ development, chemosensation and chitin-cuticle structure development. Moreover, transcripts encoding putative mechanoreceptors that monitor blood flow during tsetse feeding and interact with trypanosomes were also expressed in the PB. Microscopic analysis of the PB revealed cellular structures associated with muscles and cells. Infection with T. congolense resulted in increased and decreased expression of 38 and 88 transcripts, respectively. Twelve of these differentially expressed transcripts were PB-enriched. Among the transcripts induced upon infection were those encoding putative proteins associated with cell division function(s), suggesting enhanced tissue renewal, while those suppressed were associated with metabolic processes, extracellular matrix and ATP-binding as well as immunity. These results suggest that PB is a muscular organ with chemosensory and mechanosensory capabilities. The mechanoreceptors may be point of PB-trypanosomes interactions. T. congolense infection resulted in reduced metabolic and immune capacity of the PB. The molecular knowledge on the composition and putative functions of PB forms the foundation to identify new targets to disrupt tsetse's ability to feed and parasite transmission.


Assuntos
Estruturas Animais/parasitologia , Trypanosoma congolense/crescimento & desenvolvimento , Moscas Tsé-Tsé/parasitologia , Animais , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Análise de Sequência de RNA
8.
Elife ; 62017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079523

RESUMO

Symbiotic bacteria assist in maintaining homeostasis of the animal immune system. However, the molecular mechanisms that underlie symbiont-mediated host immunity are largely unknown. Tsetse flies (Glossina spp.) house maternally transmitted symbionts that regulate the development and function of their host's immune system. Herein we demonstrate that the obligate mutualist, Wigglesworthia, up-regulates expression of odorant binding protein six in the gut of intrauterine tsetse larvae. This process is necessary and sufficient to induce systemic expression of the hematopoietic RUNX transcription factor lozenge and the subsequent production of crystal cells, which actuate the melanotic immune response in adult tsetse. Larval Drosophila's indigenous microbiota, which is acquired from the environment, regulates an orthologous hematopoietic pathway in their host. These findings provide insight into the molecular mechanisms that underlie enteric symbiont-stimulated systemic immune system development, and indicate that these processes are evolutionarily conserved despite the divergent nature of host-symbiont interactions in these model systems.


Assuntos
Hematopoese , Proteínas de Insetos/metabolismo , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/fisiologia , Regulação para Cima , Wigglesworthia/imunologia , Wigglesworthia/fisiologia , Animais , Drosophila , Larva/microbiologia , Larva/fisiologia
9.
Proc Natl Acad Sci U S A ; 113(25): 6961-6, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27185908

RESUMO

Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse's midgut. One critical factor influencing this bottleneck is the fly's peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse's gut, VSG molecules released from trypanosomes are internalized by cells of the cardia-the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology-that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse's vector competence and disease transmission.


Assuntos
Glicoproteínas de Membrana , Moscas Tsé-Tsé/imunologia , África Subsaariana , Animais , Humanos , Mamíferos/imunologia , Trypanosoma brucei brucei/genética , Tripanossomíase , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
10.
J Immunol ; 193(2): 773-82, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24913976

RESUMO

The insect gut is lined by a protective, chitinous peritrophic matrix (PM) that separates immunoreactive epithelial cells from microbes present within the luminal contents. Tsetse flies (Glossina spp.) imbibe vertebrate blood exclusively and can be exposed to foreign microorganisms during the feeding process. We used RNA interference-based reverse genetics to inhibit the production of a structurally robust PM and then observed how this procedure impacted infection outcomes after per os challenge with exogenous bacteria (Enterobacter sp. and Serratia marcescens strain Db11) and parasitic African trypanosomes. Enterobacter and Serratia proliferation was impeded in tsetse that lacked an intact PM because these flies expressed the antimicrobial peptide gene, attacin, earlier in the infection process than did their counterparts that housed a fully developed PM. After challenge with trypanosomes, attacin expression was latent in tsetse that lacked an intact PM, and these flies were thus highly susceptible to parasite infection. Our results suggest that immunodeficiency signaling pathway effectors, as opposed to reactive oxygen intermediates, serve as the first line of defense in tsetse's gut after the ingestion of exogenous microorganisms. Furthermore, tsetse's PM is not a physical impediment to infection establishment, but instead serves as a barrier that regulates the fly's ability to immunologically detect and respond to the presence of these microbes. Collectively, our findings indicate that effective insect antimicrobial responses depend largely upon the coordination of multiple host and microbe-specific developmental factors.


Assuntos
Enterobacter/imunologia , Trato Gastrointestinal/imunologia , Serratia marcescens/imunologia , Trypanosoma brucei brucei/imunologia , Moscas Tsé-Tsé/imunologia , Animais , Quitina/metabolismo , Enterobacter/fisiologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/parasitologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/parasitologia , Expressão Gênica/imunologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Proteínas de Insetos/metabolismo , Microscopia de Fluorescência , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serratia marcescens/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Trypanosoma brucei brucei/fisiologia , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/metabolismo
11.
Appl Environ Microbiol ; 80(14): 4301-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814785

RESUMO

The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of Glossina fuscipes fuscipes and multiple tsetse species (Glossina morsitans morsitans, G. f. fuscipes, and Glossina pallidipes) that occur in sympatry in one location. We used multiple approaches, including deep sequencing of the V4 hypervariable region of the 16S rRNA gene, 16S rRNA gene clone libraries, and bacterium-specific quantitative PCR (qPCR), to investigate the levels and patterns of gut microbial diversity from a total of 151 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetse's commensal endosymbiont) infections (<0.05%). There were also several individuals (22%) with high Sodalis density, which also carried coinfections with Serratia. Albeit in low density, we noted differences in microbiota composition among the genetically distinct G. f. fuscipes flies and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (10(4) to 10(6) normalized genomes), with G. f. fuscipes having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetse's gut microbiota compared to those of other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species.


Assuntos
Trato Gastrointestinal/microbiologia , Variação Genética , Microbiota , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/microbiologia , Animais , Clonagem Molecular , DNA Bacteriano/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Filogeografia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose , Uganda , Wigglesworthia/genética , Wigglesworthia/isolamento & purificação
12.
PLoS Pathog ; 9(4): e1003318, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637607

RESUMO

Tsetse flies (Glossina spp.) vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb) and epithelial (inducible nitric oxide synthase and dual oxidase) immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm(Apo)) present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm(Apo) adults present a structurally compromised peritrophic matrix (PM), which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm(Apo) flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results document a novel finding, which is the existence of a positive correlation between tsetse's larval microbiome and the integrity of the emerging adult PM gut immune barrier.


Assuntos
Microbiota , Trypanosoma brucei rhodesiense/imunologia , Moscas Tsé-Tsé/imunologia , Moscas Tsé-Tsé/parasitologia , Animais , Proteínas de Transporte/biossíntese , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/parasitologia , Proteínas de Insetos/biossíntese , NADPH Oxidases/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Simbiose , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/crescimento & desenvolvimento , Moscas Tsé-Tsé/microbiologia
13.
BMC Evol Biol ; 13: 31, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23384159

RESUMO

BACKGROUND: Wolbachia pipientis, a diverse group of α-proteobacteria, can alter arthropod host reproduction and confer a reproductive advantage to Wolbachia-infected females (cytoplasmic incompatibility (CI)). This advantage can alter host population genetics because Wolbachia-infected females produce more offspring with their own mitochondrial DNA (mtDNA) haplotypes than uninfected females. Thus, these host haplotypes become common or fixed (selective sweep). Although simulations suggest that for a CI-mediated sweep to occur, there must be a transient phase with repeated initial infections of multiple individual hosts by different Wolbachia strains, this has not been observed empirically. Wolbachia has been found in the tsetse fly, Glossina fuscipes fuscipes, but it is not limited to a single host haplotype, suggesting that CI did not impact its population structure. However, host population genetic differentiation could have been generated if multiple Wolbachia strains interacted in some populations. Here, we investigated Wolbachia genetic variation in G. f. fuscipes populations of known host genetic composition in Uganda. We tested for the presence of multiple Wolbachia strains using Multi-Locus Sequence Typing (MLST) and for an association between geographic region and host mtDNA haplotype using Wolbachia DNA sequence from a variable locus, groEL (heat shock protein 60). RESULTS: MLST demonstrated that some G. f. fuscipes carry Wolbachia strains from two lineages. GroEL revealed high levels of sequence diversity within and between individuals (Haplotype diversity = 0.945). We found Wolbachia associated with 26 host mtDNA haplotypes, an unprecedented result. We observed a geographical association of one Wolbachia lineage with southern host mtDNA haplotypes, but it was non-significant (p = 0.16). Though most Wolbachia-infected host haplotypes were those found in the contact region between host mtDNA groups, this association was non-significant (p = 0.17). CONCLUSIONS: High Wolbachia sequence diversity and the association of Wolbachia with multiple host haplotypes suggest that different Wolbachia strains infected G. f. fuscipes multiple times independently. We suggest that these observations reflect a transient phase in Wolbachia evolution that is influenced by the long gestation and low reproductive output of tsetse. Although G. f. fuscipes is superinfected with Wolbachia, our data does not support that bidirectional CI has influenced host genetic diversity in Uganda.


Assuntos
Variação Genética , Genética Populacional , Moscas Tsé-Tsé/microbiologia , Wolbachia/genética , Animais , Chaperonina 60/genética , DNA Mitocondrial/genética , Feminino , Genes Bacterianos , Geografia , Haplótipos , Funções Verossimilhança , Tipagem de Sequências Multilocus , Filogenia , Moscas Tsé-Tsé/genética , Uganda
14.
J Invertebr Pathol ; 112 Suppl: S32-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22874746

RESUMO

Tsetse flies have a highly regulated and defined microbial fauna made of 3 bacterial symbionts (obligate Wigglesworthia glossinidia, commensal Sodalis glossinidius and parasitic Wolbachia pipientis) in addition to a DNA virus (Glossina pallidipes Salivary gland Hypertrophy Virus, GpSGHV). It has been possible to rear flies in the absence of either Wigglesworthia or in totally aposymbiotic state by dietary supplementation of tsetse's bloodmeal. In the absence of Wigglesworthia, tsetse females are sterile, and adult progeny are immune compromised. The functional contributions for Sodalist are less known, while Wolbachia cause reproductive manupulations known as cytoplasmic incompatibility (CI). High GpSGHV virus titers result in reduced fecundity and lifespan, and have compromised efforts to colonize flies in the insectary for large rearing purposes. Here we investigated the within community effects on the density regulation of the individual microbiome partners in tsetse lines with different symbiotic compositions. We show that absence of Wigglesworthia results in loss of Sodalis in subsequent generations possibly due to nutritional dependancies between the symbiotic partners. While an initial decrease in Wolbachia and GpSGHV levels are also noted in the absence of Wigglesworthia, these infections eventually reach homeostatic levels indicating adaptations to the new host immune environment or nutritional ecology. Absence of all bacterial symbionts also results in an initial reduction of viral titers, which recover in the second generation. Our findings suggest that in addition to the host immune system, interdependencies between symbiotic partners result in a highly tuned density regulation for tsetse's microbiome.


Assuntos
Vírus de Insetos , Metagenoma , Moscas Tsé-Tsé/microbiologia , Animais , Infecções Bacterianas/transmissão , Vírus de DNA , Feminino , Masculino , Simbiose , Wigglesworthia , Wolbachia
15.
Appl Environ Microbiol ; 78(21): 7760-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22941073

RESUMO

Many bacteria successfully colonize animals by forming protective biofilms. Molecular processes that underlie the formation and function of biofilms in pathogenic bacteria are well characterized. In contrast, the relationship between biofilms and host colonization by symbiotic bacteria is less well understood. Tsetse flies (Glossina spp.) house 3 maternally transmitted symbionts, one of which is a commensal (Sodalis glossinidius) found in several host tissues, including the gut. We determined that Sodalis forms biofilms in the tsetse gut and that this process is influenced by the Sodalis outer membrane protein A (OmpA). Mutant Sodalis strains that do not produce OmpA (Sodalis ΔOmpA mutants) fail to form biofilms in vitro and are unable to colonize the tsetse gut unless endogenous symbiotic bacteria are present. Our data indicate that in the absence of biofilms, Sodalis ΔOmpA mutant cells are exposed to and eliminated by tsetse's innate immune system, suggesting that biofilms help Sodalis evade the host immune system. Tsetse is the sole vector of pathogenic African trypanosomes, which also reside in the fly gut. Acquiring a better understanding of the dynamics that promote Sodalis colonization of the tsetse gut may enhance the development of novel disease control strategies.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes , Enterobacteriaceae/fisiologia , Moscas Tsé-Tsé/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Sistema Digestório/microbiologia , Enterobacteriaceae/crescimento & desenvolvimento , Feminino , Masculino , Metagenoma , Mutação , Simbiose
16.
PLoS Negl Trop Dis ; 6(6): e1708, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22724039

RESUMO

Human African Trypanosomiasis is a devastating disease caused by the parasite Trypanosoma brucei. Trypanosomes live extracellularly in both the tsetse fly and the mammal. Trypanosome surface proteins can directly interact with the host environment, allowing parasites to effectively establish and maintain infections. Glycosylphosphatidylinositol (GPI) anchoring is a common posttranslational modification associated with eukaryotic surface proteins. In T. brucei, three GPI-anchored major surface proteins have been identified: variant surface glycoproteins (VSGs), procyclic acidic repetitive protein (PARP or procyclins), and brucei alanine rich proteins (BARP). The objective of this study was to select genes encoding predicted GPI-anchored proteins with unknown function(s) from the T. brucei genome and characterize the expression profile of a subset during cyclical development in the tsetse and mammalian hosts. An initial in silico screen of putative T. brucei proteins by Big PI algorithm identified 163 predicted GPI-anchored proteins, 106 of which had no known functions. Application of a second GPI-anchor prediction algorithm (FragAnchor), signal peptide and trans-membrane domain prediction software resulted in the identification of 25 putative hypothetical proteins. Eighty-one gene products with hypothetical functions were analyzed for stage-regulated expression using semi-quantitative RT-PCR. The expression of most of these genes were found to be upregulated in trypanosomes infecting tsetse salivary gland and proventriculus tissues, and 38% were specifically expressed only by parasites infecting salivary gland tissues. Transcripts for all of the genes specifically expressed in salivary glands were also detected in mammalian infective metacyclic trypomastigotes, suggesting a possible role for these putative proteins in invasion and/or establishment processes in the mammalian host. These results represent the first large-scale report of the differential expression of unknown genes encoding predicted T. brucei surface proteins during the complete developmental cycle. This knowledge may form the foundation for the development of future novel transmission blocking strategies against metacyclic parasites.


Assuntos
Proteínas Ligadas por GPI/biossíntese , Perfilação da Expressão Gênica , Proteínas de Membrana/biossíntese , Proteínas de Protozoários/biossíntese , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Animais , Biologia Computacional , Trato Gastrointestinal/parasitologia , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Glândulas Salivares/parasitologia , Trypanosoma brucei brucei/genética
17.
Appl Environ Microbiol ; 78(13): 4627-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544247

RESUMO

Tsetse flies (Diptera: Glossinidae) are vectors for African trypanosomes (Euglenozoa: kinetoplastida), protozoan parasites that cause African trypanosomiasis in humans (HAT) and nagana in livestock. In addition to trypanosomes, two symbiotic bacteria (Wigglesworthia glossinidia and Sodalis glossinidius) and two parasitic microbes, Wolbachia and a salivary gland hypertrophy virus (SGHV), have been described in tsetse. Here we determined the prevalence of and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in Glossina fuscipes fuscipes in Uganda over a large geographical scale spanning the range of host genetic and spatial diversity. Using a multivariate analysis approach, we uncovered complex coinfection dynamics between the pathogens and statistically significant associations between host genetic groups and pathogen prevalence. It is important to note that these coinfection dynamics and associations with the host were not apparent by univariate analysis. These associations between host genotype and pathogen are particularly evident for Wolbachia and SGHV where host groups are inversely correlated for Wolbachia and SGHV prevalence. On the other hand, trypanosome infection prevalence is more complex and covaries with the presence of the other two pathogens, highlighting the importance of examining multiple pathogens simultaneously before making generalizations about infection and spatial patterns. It is imperative to note that these novel findings would have been missed if we had employed the standard univariate analysis used in previous studies. Our results are discussed in the context of disease epidemiology and vector control.


Assuntos
Trypanosoma/crescimento & desenvolvimento , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Vírus/crescimento & desenvolvimento , Wolbachia/crescimento & desenvolvimento , Animais , Biota , Interações Hospedeiro-Patógeno , Interações Microbianas , Tripanossomíase Africana/transmissão , Uganda
18.
mBio ; 3(1)2012.
Artigo em Inglês | MEDLINE | ID: mdl-22334516

RESUMO

UNLABELLED: Ancient endosymbionts have been associated with extreme genome structural stability with little differentiation in gene inventory between sister species. Tsetse flies (Diptera: Glossinidae) harbor an obligate endosymbiont, Wigglesworthia, which has coevolved with the Glossina radiation. We report on the ~720-kb Wigglesworthia genome and its associated plasmid from Glossina morsitans morsitans and compare them to those of the symbiont from Glossina brevipalpis. While there was overall high synteny between the two genomes, a large inversion was noted. Furthermore, symbiont transcriptional analyses demonstrated host tissue and development-specific gene expression supporting robust transcriptional regulation in Wigglesworthia, an unprecedented observation in other obligate mutualist endosymbionts. Expression and immunohistochemistry confirmed the role of flagella during the vertical transmission process from mother to intrauterine progeny. The expression of nutrient provisioning genes (thiC and hemH) suggests that Wigglesworthia may function in dietary supplementation tailored toward host development. Furthermore, despite extensive conservation, unique genes were identified within both symbiont genomes that may result in distinct metabolomes impacting host physiology. One of these differences involves the chorismate, phenylalanine, and folate biosynthetic pathways, which are uniquely present in Wigglesworthia morsitans. Interestingly, African trypanosomes are auxotrophs for phenylalanine and folate and salvage both exogenously. It is possible that W. morsitans contributes to the higher parasite susceptibility of its host species. IMPORTANCE: Genomic stasis has historically been associated with obligate endosymbionts and their sister species. Here we characterize the Wigglesworthia genome of the tsetse fly species Glossina morsitans and compare it to its sister genome within G. brevipalpis. The similarity and variation between the genomes enabled specific hypotheses regarding functional biology. Expression analyses indicate significant levels of transcriptional regulation and support development- and tissue-specific functional roles for the symbiosis previously not observed in obligate mutualist symbionts. Retention of the genetically expensive flagella within these small genomes was demonstrated to be significant in symbiont transmission and tailored to the unique tsetse fly reproductive biology. Distinctions in metabolomes were also observed. We speculate an additional role for Wigglesworthia symbiosis where infections with pathogenic trypanosomes may depend upon symbiont species-specific metabolic products and thus influence the vector competence traits of different tsetse fly host species.


Assuntos
Genoma Bacteriano , Genoma de Inseto , Simbiose , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/fisiologia , Sequência de Aminoácidos , Animais , Ácido Corísmico/biossíntese , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Evolução Molecular , Flagelos/genética , Flagelos/metabolismo , Ácido Fólico/biossíntese , Regulação Bacteriana da Expressão Gênica , Imuno-Histoquímica , Padrões de Herança , Dados de Sequência Molecular , Fenilalanina/biossíntese , Plasmídeos/genética , Plasmídeos/metabolismo , Especificidade da Espécie , Sintenia , Transcrição Gênica , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/metabolismo , Wigglesworthia/genética , Wigglesworthia/metabolismo
19.
BMC Genomics ; 11: 160, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20214793

RESUMO

BACKGROUND: Tsetse flies, vectors of African trypanosomes, undergo viviparous reproduction (the deposition of live offspring). This reproductive strategy results in a large maternal investment and the deposition of a small number of progeny during a female's lifespan. The reproductive biology of tsetse has been studied on a physiological level; however the molecular analysis of tsetse reproduction requires deeper investigation. To build a foundation from which to base molecular studies of tsetse reproduction, a cDNA library was generated from female tsetse (Glossina morsitans morsitans) reproductive tissues and the intrauterine developmental stages. 3438 expressed sequence tags were sequenced and analyzed. RESULTS: Analysis of a nonredundant catalogue of 1391 contigs resulted in 520 predicted proteins. 475 of these proteins were full length. We predict that 412 of these represent cytoplasmic proteins while 57 are secreted. Comparison of these proteins with other tissue specific tsetse cDNA libraries (salivary gland, fat body/milk gland, and midgut) identified 51 that are unique to the reproductive/immature cDNA library. 11 unique proteins were homologous to uncharacterized putative proteins within the NR database suggesting the identification of novel genes associated with reproductive functions in other insects (hypothetical conserved). The analysis also yielded seven putative proteins without significant homology to sequences present in the public database (unknown genes). These proteins may represent unique functions associated with tsetse's viviparous reproductive cycle. RT-PCR analysis of hypothetical conserved and unknown contigs was performed to determine basic tissue and stage specificity of the expression of these genes. CONCLUSION: This paper identifies 51 putative proteins specific to a tsetse reproductive/immature EST library. 11 of these proteins correspond to hypothetical conserved genes and 7 proteins are tsetse specific.


Assuntos
Perfilação da Expressão Gênica , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/fisiologia , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Hibridização Genômica Comparativa , Mapeamento de Sequências Contíguas , Etiquetas de Sequências Expressas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Genes de Insetos , Estágios do Ciclo de Vida/genética , Estágios do Ciclo de Vida/fisiologia , Dados de Sequência Molecular , Ovário/metabolismo , Filogenia , Reprodução/genética , Reprodução/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Útero/metabolismo
20.
Proc Natl Acad Sci U S A ; 106(29): 12133-8, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19587241

RESUMO

Tsetse flies, the sole vectors of African trypanosomes, have coevolved with mutualistic endosymbiont Wigglesworthia glossinidiae. Elimination of Wigglesworthia renders tsetse sterile and increases their trypanosome infection susceptibility. We show that a tsetse peptidoglycan recognition protein (PGRP-LB) is crucial for symbiotic tolerance and trypanosome infection processes. Tsetse pgrp-lb is expressed in the Wigglesworthia-harboring organ (bacteriome) in the midgut, and its level of expression correlates with symbiont numbers. Adult tsetse cured of Wigglesworthia infections have significantly lower pgrp-lb levels than corresponding normal adults. RNA interference (RNAi)-mediated depletion of pgrp-lb results in the activation of the immune deficiency (IMD) signaling pathway and leads to the synthesis of antimicrobial peptides (AMPs), which decrease Wigglesworthia density. Depletion of pgrp-lb also increases the host's susceptibility to trypanosome infections. Finally, parasitized adults have significantly lower pgrp-lb levels than flies, which have successfully eliminated trypanosome infections. When both PGRP-LB and IMD immunity pathway functions are blocked, flies become unusually susceptible to parasitism. Based on the presence of conserved amidase domains, tsetse PGRP-LB may scavenge the peptidoglycan (PGN) released by Wigglesworthia and prevent the activation of symbiont-damaging host immune responses. In addition, tsetse PGRP-LB may have an anti-protozoal activity that confers parasite resistance. The symbiotic adaptations and the limited exposure of tsetse to foreign microbes may have led to the considerable differences in pgrp-lb expression and regulation noted in tsetse from that of closely related Drosophila. A dynamic interplay between Wigglesworthia and host immunity apparently is influential in tsetse's ability to transmit trypanosomes.


Assuntos
Proteínas de Transporte/metabolismo , Simbiose , Trypanosoma/fisiologia , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Wigglesworthia/fisiologia , Animais , Proteínas de Transporte/genética , Corpo Adiposo/metabolismo , Feminino , Regulação da Expressão Gênica , Homeostase , Imunidade Inata , Proteínas de Insetos/metabolismo , Parasitos/fisiologia , Fatores de Tempo , Moscas Tsé-Tsé/imunologia , Wigglesworthia/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...