Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Mater ; 35(28): e2211619, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37021402

RESUMO

The defects located at the interfaces and grain boundaries (GBs) of perovskite films are detrimental to the photovoltaic performance and stability of perovskite solar cells. Manipulating the perovskite crystallization process and tailoring the interfaces with molecular passivators are the main effective strategies to mitigate performance loss and instability. Herein, a new strategy is reported to manipulate the crystallization process of FAPbI3 -rich perovskite by incorporating a small amount of alkali-functionalized polymers into the antisolvent solution. The synergic effects of the alkali cations and poly(acrylic acid) anion effectively passivate the defects on the surface and GBs of perovskite films. As a result, the rubidium (Rb)-functionalized poly(acrylic acid) significantly improves the power conversion efficiency of FAPbI3 perovskite solar cells to approaching 25% and reduces the risk of lead ion (Pb2+ ) leakage continuously via the strong interaction between CO bonds and Pb2+ . In addition, the unencapsulated device shows enhanced operational stability, retaining 80% of its initial efficiency after 500 h operation at maximum power point under one-sun illumination.


Assuntos
Álcalis , Chumbo , Cristalização , Polímeros
2.
Acta Pharmaceutica Sinica ; (12): 1086-1095, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-886992

RESUMO

Bioorthogonal fluorogenic probes are becoming an ideal tool for live-cell fluorescence imaging. With the tetrazine bioorthogonal fluorogenic probe that displays fluorescence enhancement, the tetrazine plays the dual-role of a bioorthogonal reaction unit and the fluorescence quenching unit. The "off" and "on" states of the fluorescence probe are mainly controlled through inverse electron demand Diels-Alder (IEDDA) bioorthogonal reaction. We designed a series of turn-on tetrazine fluorescent probes with Donor-π-Acceptor (D-π-A) structure to achieve a high signal-to-noise ratio and specificity of fluorescence imaging. This series of probes reacted with the dienophile bicyclononyne, and then generated pyridazine structure in-situ that acted as an electron acceptor, resulting in a new D-π-A effect of fluorescent dyes, turning on the intramolecular charge transfer (ICT) effect. By adjusting the electron-donating groups and the degree of conjugation, tunable fluorescence spectra between 400-647 nm with fluorescence turn-on enhanced up to 500-fold have been achieved. This research lays the foundation for the further optimization of tetrazine bioorthogonal fluorescent probes and their applications in molecular imaging and biomedical fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...