Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Inflamm Res ; 17: 2839-2850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751687

RESUMO

Purpose: Acupoint autohemotherapy (A-AHT) has been proposed as an alternative and complementary treatment for atopic dermatitis (AD), yet the exact role of its blood component in terms of therapeutic efficacy and mechanism of action is still largely unknown. Methods: This study aimed to evaluate the therapeutic efficacies and action mechanisms of intramuscular injections of autologous whole blood (AWB) and mouse immunoglobulin G (IgG) (autologous or heterologous) at acupoints on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse models. Serum levels of total immunoglobulin E (IgE), IgG, interleukin-10 (IL-10), and interferon-gamma (IFN-γ) were measured, as well as mRNA expression levels of Forkhead box P3 (FoxP3), IL-10 and IFN-γ in dorsal skin lesions, and IL-10+, IFN-γ+ and FoxP3+CD4+T cells in murine spleen. Results: It showed that repeated acupoint injection of AWB, autologous total IgG (purified from autologous blood in AD mice) or heterologous total IgG (purified from healthy blood in normal mice) effectively reduced the severity of AD symptoms and decreased epidermal and dermal thickness as well as mast cells in skin lesions. Additionally, AWB acupoint injection was found to upregulate FoxP3+, IL-10+ and IFN-γ+ CD4+T cells in murine spleen, suppressing the production of IgE antibodies and increasing that of IgG antibodies in the serum. Furthermore, both AWB and autologous total IgG administrations significantly elevated FoxP3 expression, mRNA levels of IL-10 and IFN-γ in dorsal skin lesions. However, acupoint injection of heterologous total IgG had no effect on regulatory T (Treg) and Th1 cells modulation. Conclusion: These findings suggest that the therapeutic effects of A-AHT on AD are mediated by IgG-induced activation of Treg cells.

2.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791198

RESUMO

MTX-211 is a first-in-class dual inhibitor of epidermal growth factor receptor (EGFR) and phosphoinositide-3 kinase (PI3K) signaling pathways with a compelling pharmaceutical profile and could enhance the effectiveness of mitogen-activated protein kinase kinase (MEK) inhibitor therapy in colorectal tumors with KRAS mutations. However, the specific mechanisms contributing to the acquired resistance to MTX-211 in human cancers remain elusive. Here, we discovered that the overexpression of the ATP-binding cassette (ABC) drug transporter ABCG2, a prevalent mechanism associated with multidrug resistance (MDR), could diminish the effectiveness of MTX-211 in human cancer cells. We showed that the drug efflux activity of ABCG2 substantially decreased the intracellular accumulation of MTX-211 in cancer cells. As a result, the cytotoxicity and effectiveness of MTX-211 in suppressing the activation of the EGFR and PI3K pathways were significantly attenuated in cancer cells overexpressing ABCG2. Moreover, the enhancement of the MTX-211-stimulated ATPase activity of ABCG2 and the computational molecular docking analysis illustrating the binding of MTX-211 to the substrate-binding sites of ABCG2 offered a further indication for the interaction between MTX-211 and ABCG2. In summary, our findings indicate that MTX-211 acts as a substrate for ABCG2, underscoring the involvement of ABCG2 in the emergence of resistance to MTX-211. This finding carries clinical implications and merits further exploration.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Proteínas de Neoplasias , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/antagonistas & inibidores , Linhagem Celular Tumoral , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia
3.
ACS Pharmacol Transl Sci ; 7(1): 161-175, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230272

RESUMO

ATP-binding cassette (ABC) transporters, notably ABCB1 (P-glycoprotein) and ABCG2, play a crucial role in the development of multidrug resistance (MDR) during the administration of chemotherapy for cancer patients. With a lack of approved treatments for addressing multidrug-resistant cancers, MDR remains a substantial challenge to the effective management of cancer. Rather than focusing on developing novel synthetic inhibitors, a promising approach to combat MDR involves repurposing approved therapeutic agents to enhance the sensitivity to cytotoxic antiproliferative drugs of multidrug-resistant cancer cells with high expression of ABCB1 or ABCG2. In this investigation, we observed a substantial reversal of MDR conferred by ABCB1 and ABCG2 in multidrug-resistant cancer cells through the use of mobocertinib, an approved third-generation inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. Mobocertinib demonstrated the ability to hinder drug transport function without causing changes in protein expression. The interactions between mobocertinib and ABCB1, as well as ABCG2, were validated through ATPase assays. Furthermore, in silico docking simulations were utilized to substantiate the binding of mobocertinib within the drug-binding pockets of both ABCB1 and ABCG2. We conclude that further testing of mobocertinib in combination therapy is warranted for patients with tumors expressing elevated levels of the ABC drug transporters ABCB1 and ABCG2.

4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38004460

RESUMO

The high expression of the ATP-binding cassette (ABC) drug transporter ABCG2 in cancer cells contributes to the emergence of multidrug resistance (MDR) in individuals afflicted with either solid tumors or blood cancers. MDR poses a major impediment in the realm of clinical cancer chemotherapy. Recently, substantial endeavors have been dedicated to identifying bioactive compounds isolated from nature capable of counteracting ABCG2-mediated MDR in cancer cells. Imperatorin, a natural coumarin derivative renowned for its diverse pharmacological properties, has not previously been explored for its impact on cancer drug resistance. This study investigates the chemosensitizing potential of imperatorin in ABCG2-overexpressing cancer cells. Experimental results reveal that at sub-toxic concentrations, imperatorin significantly antagonizes the activity of ABCG2 and reverses ABCG2-mediated MDR in a concentration-dependent manner. Furthermore, biochemical data and in silico analysis of imperatorin docking to the inward-open conformation of human ABCG2 indicate that imperatorin directly interacts with multiple residues situated within the transmembrane substrate-binding pocket of ABCG2. Taken together, these results furnish substantiation that imperatorin holds promise for further evaluation as a potent inhibitor of ABCG2, warranting exploration in combination drug therapy to enhance the effectiveness of therapeutic agents for patients afflicted with tumors that exhibit high levels of ABCG2.

5.
Drug Resist Updat ; 71: 101011, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37865067

RESUMO

The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.


Assuntos
Reposicionamento de Medicamentos , Neoplasias , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas de Membrana Transportadoras , Resistência a Múltiplos Medicamentos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
6.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762275

RESUMO

ATP-binding cassette transporters, including ABCB1 (P-glycoprotein) and ABCG2 (BCRP/MXR/ABCP), are pivotal in multidrug resistance (MDR) development in cancer patients undergoing conventional chemotherapy. The absence of approved therapeutic agents for multidrug-resistant cancers presents a significant challenge in effectively treating cancer. Researchers propose repurposing existing drugs to sensitize multidrug-resistant cancer cells, which overexpress ABCB1 or ABCG2, to conventional anticancer drugs. The goal of this study is to assess whether furmonertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor overcomes drug resistance mediated by ABCB1 and ABCG2 transporters. Furmonertinib stands out due to its ability to inhibit drug transport without affecting protein expression. The discovery of this characteristic was validated through ATPase assays, which revealed interactions between furmonertinib and ABCB1/ABCG2. Additionally, in silico docking of furmonertinib offered insights into potential interaction sites within the drug-binding pockets of ABCB1 and ABCG2, providing a better understanding of the underlying mechanisms responsible for the reversal of MDR by this repurposed drug. Given the encouraging results, we propose that furmonertinib should be explored as a potential candidate for combination therapy in patients with tumors that have high levels of ABCB1 and/or ABCG2. This combination therapy holds the potential to enhance the effectiveness of conventional anticancer drugs and presents a promising strategy for overcoming MDR in cancer treatment.

7.
Cells ; 12(7)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048130

RESUMO

Constitutive activation of the phosphoinositide-3-kinase (PI3K)/Akt signaling pathway is crucial for tumor growth and progression. As such, this pathway has been an enticing target for drug discovery. Although HS-173 is a potent PI3K inhibitor that halts cancer cell proliferation via G2/M cell cycle arrest, the resistance mechanisms to HS-173 have not been investigated. In this study, we investigated the susceptibility of HS-173 to efflux mediated by the multidrug efflux transporters ABCB1 and ABCG2, which are two of the most well-known ATP-binding cassette (ABC) transporters associated with the development of cancer multidrug resistance (MDR). We found that the overexpression of ABCB1 or ABCG2 significantly reduced the efficacy of HS-173 in human cancer cells. Our data show that the intracellular accumulation of HS-173 was substantially reduced by ABCB1 and ABCG2, affecting G2/M arrest and apoptosis induced by HS-173. More importantly, the efficacy of HS-173 in multidrug-resistant cancer cells could be recovered by inhibiting the drug-efflux function of ABCB1 and ABCG2. Taken together, our study has demonstrated that HS-173 is a substrate for both ABCB1 and ABCG2, resulting in decreased intracellular concentration of this drug, which may have implications for its clinical use.


Assuntos
Resistência a Múltiplos Medicamentos , Neoplasias , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Transportadores de Cassetes de Ligação de ATP/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Neoplasias/tratamento farmacológico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP
8.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36361555

RESUMO

Hydroxygenkwanin, a flavonoid isolated from the leaves of the Daphne genkwa plant, is known to have pharmacological properties; however, its modulatory effect on multidrug resistance, which is (MDR) mediated by ATP-binding cassette (ABC) drug transporters, has not been investigated. In this study, we examine the interaction between hydroxygenkwanin, ABCB1, and ABCG2, which are two of the most well-characterized ABC transporters known to contribute to clinical MDR in cancer patients. Hydroxygenkwanin is not an efflux substrate of either ABCB1 or ABCG2. We discovered that, in a concentration-dependent manner, hydroxygenkwanin significantly reverses ABCG2-mediated resistance to multiple cytotoxic anticancer drugs in ABCG2-overexpressing multidrug-resistant cancer cells. Although it inhibited the drug transport function of ABCG2, it had no significant effect on the protein expression of this transporter in cancer cells. Experimental data showing that hydroxygenkwanin stimulates the ATPase activity of ABCG2, and in silico docking analysis of hydroxygenkwanin binding to the inward-open conformation of human ABCG2, further indicate that hydroxygenkwanin sensitizes ABCG2-overexpressing cancer cells by binding to the substrate-binding pocket of ABCG2 and attenuating the transport function of ABCG2. This study demonstrates the potential use of hydroxygenkwanin as an effective inhibitor of ABCG2 in drug combination therapy trials for patients with tumors expressing higher levels of ABCG2.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resistência a Múltiplos Medicamentos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Flavonoides/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias/tratamento farmacológico
9.
Biomed Pharmacother ; 149: 112922, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36068781

RESUMO

The overexpression of ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein) or ABCG2 (BCRP/MXR/ABCP) in cancer cells is frequently associated with the development of multidrug resistance (MDR) in cancer patients, which remains a major obstacle to effective cancer treatment. By utilizing energy derived from ATP hydrolysis, both transporters have been shown to reduce the chemosensitivity of cancer cells by actively effluxing cytotoxic anticancer drugs out of cancer cells. Knowing that there are presently no approved drugs or other therapeutics for the treatment of multidrug-resistant cancers, in recent years, studies have investigated the repurposing of tyrosine kinase inhibitors (TKIs) to act as agents against MDR mediated by ABCB1 and/or ABCG2. SKLB610 is a multi-targeted TKI with potent activity against vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor 2 (FGFR2). In this study, we investigate the interaction of SKLB610 with ABCB1 and ABCG2. We discovered that neither ABCB1 nor ABCG2 confers resistance to SKLB610, but SKLB610 selectively sensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer agents in a concentration-dependent manner. Our data indicate that SKLB610 reverses ABCG2-mediated MDR by attenuating the drug-efflux function of ABCG2 without affecting its total cell expression. These findings are further supported by results of SKLB610-stimulated ABCG2 ATPase activity and in silico docking of SKLB610 in the drug-binding pocket of ABCG2. In summary, we reveal the potential of SKLB610 to overcome resistance to cytotoxic anticancer drugs, which offers an additional treatment option for patients with multidrug-resistant cancers and warrants further investigation.


Assuntos
Antineoplásicos , Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP , Trifosfato de Adenosina/farmacologia , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Proteínas de Neoplasias/metabolismo , Ácidos Picolínicos , Inibidores de Proteínas Quinases/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Biomed Pharmacother ; 154: 113663, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36081287

RESUMO

The development of multidrug resistance (MDR) is one of the major challenges in the treatment of cancer which is caused by the overexpression of the ATP-binding cassette (ABC) transporters ABCB1 (P-glycoprotein) and/or ABCG2 (BCRP/MXR/ABCP) in cancer cells. These transporters are capable of reducing the efficacy of cytotoxic drugs by actively effluxing them out of cancer cells. Since there is currently no approved treatment for patients with multidrug-resistant tumors, the drug repurposing approach provides an alternative route to identify agents to reverse MDR mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. WDR5-0103 is a histone H3 lysine 4 (H3K4) methyltransferase inhibitor that disrupts the interaction between the WD repeat-containing protein 5 (WDR5) and mixed-lineage leukemia (MLL) protein. In this study, the effect of WDR5-0103 on MDR mediated by ABCB1 and ABCG2 was determined. We found that in a concentration-dependent manner, WDR5-0103 could sensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to conventional cytotoxic drugs. Our results showed that WDR5-0103 reverses MDR and improves drug-induced apoptosis in multidrug-resistant cancer cells by inhibiting the drug-efflux function of ABCB1 and ABCG2, without altering the protein expression of ABCB1 or ABCG2. The potential sites of interactions of WDR5-0103 with the drug-binding pockets of ABCB1 and ABCG2 were predicted by molecular docking. In conclusion, the MDR reversal activity of WDR5-0103 demonstrated here indicates that it could be used in combination therapy to provide benefits to a subset of patients with tumor expressing high levels of ABCB1 or ABCG2.


Assuntos
Antineoplásicos , Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo , Repetições WD40
11.
Cancers (Basel) ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565470

RESUMO

Ensartinib (X-396) is a promising second-generation small-molecule inhibitor of anaplastic lymphoma kinase (ALK) that was developed for the treatment of ALK-positive non-small-cell lung cancer. Preclinical and clinical trial results for ensartinib showed superior efficacy and a favorable safety profile compared to the first-generation ALK inhibitors that have been approved by the U.S. Food and Drug Administration. Although the potential mechanisms of acquired resistance to ensartinib have not been reported, the inevitable emergence of resistance to ensartinib may limit its therapeutic application in cancer. In this work, we investigated the interaction of ensartinib with P-glycoprotein (P-gp) and ABCG2, two ATP-binding cassette (ABC) multidrug efflux transporters that are commonly associated with the development of multidrug resistance in cancer cells. Our results revealed that P-gp overexpression, but not expression of ABCG2, was associated with reduced cancer cell susceptibility to ensartinib. P-gp directly decreased the intracellular accumulation of ensartinib, and consequently reduced apoptosis and cytotoxicity induced by this drug. The cytotoxicity of ensartinib could be significantly reversed by treatment with the P-gp inhibitor tariquidar. In conclusion, we report that ensartinib is a substrate of P-gp, and provide evidence that this transporter plays a role in the development of ensartinib resistance. Further investigation is needed.

12.
RSC Adv ; 12(9): 5349-5356, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35425561

RESUMO

Two dimensional (2D) 1H-13C heteronuclear single-quantum correlation (HSQC) spectroscopy has recently been proposed for quantitative determination of typical linear low density polyethylene (LLDPE) with high accuracy. It requires highly precise measurement to achieve further reliable quantification. In this context, this paper aims at determining conditions that allow the achievement of high precision. On the basis of the optimized parameters, two time-saving strategies, nonuniform sampling (NUS) and band-selective HSQC are evaluated on model polyolefins in terms of repeatability. Precision better than 0.3% and 5% for ethylene content (E mol%) and 1-hexene content (H mol%) of the model poly(ethylene-co-1-hexene)s are obtained with 50% NUS or band-selective HSQC. Moreover, dramatic precision enhancements can be achieved with the combination of band-selective HSQC and 50% NUS, in which repeatabilities better than 0.15% and 2.5% for E mol% and H mol% are observed. The experiment times are reduced to about 0.5 h. These methods open important perspectives for rapid, precise and accurate quantitative analysis of complex polymers.

13.
BMC Med Educ ; 22(1): 157, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260163

RESUMO

BACKGROUND: Health technology assessment (HTA) has become essential in many countries over the past few years, and the demand for HTA professionals has increased in academia, governments, and industries. This study aimed to examine which courses are most important and which training activities are most helpful for the development of HTA proficiency as perceived by HTA experts. METHODS: The survey questionnaire was developed by literature review and expert opinion. Convenience sampling was used to survey HTA experts from the industrial sector, academic/research units, and government/independent assessment organizations using an online survey tool, SurveyCake. We collected respondents' demographic information and asked them to assess the importance of each course included in an HTA program on a 5-point Likert Scale (1 = least important; 5 = highly important). In addition, respondents were asked to assess the extent to which various activities are helpful for HTA proficiency development. RESULTS: A total of 158 domestic and overseas experts in HTA-related fields were invited to participate in the survey and 68 completed the questionnaire. Among the respondents, the majority were female (57.4%) and working in academia (44.1%). The mean ± standard deviation of respondents' age and number of years spent in HTA-related fields were 43.2 ± 11.0 years and 11.3 ± 9.9 years, respectively. The course that was rated the most important was "Pharmacoeconomics/Cost-effectiveness analysis" with a score of 4.8 ± 0.4 points, followed by "Health economics" at 4.7 ± 0.7 points. Moreover, internships at HTA-related institutions were perceived to be the most helpful training activity for HTA proficiency development. CONCLUSIONS: Our study findings provide a better understanding of the requirements for developing HTA proficiency and can serve as a reference for the modification of current HTA education and training programs.


Assuntos
Tecnologia Biomédica , Avaliação da Tecnologia Biomédica , Análise Custo-Benefício , Feminino , Humanos , Masculino , Projetos de Pesquisa , Inquéritos e Questionários
14.
Chem Biol Interact ; 357: 109889, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35288162

RESUMO

Thrombin is a potent platelet activator and a key mediator of blood coagulation, thereby playing a crucial role in cardiovascular disease. Recently, protease-activated receptor 4 (PAR4), one of thrombin receptors in human platelets, is emerging as a promising target for antiplatelet therapy. 3,5,2',4'-Tetramethoxystilbene (TMS), a resveratrol analog, have demonstrated promising effects on preventing atherosclerosis and hypertension, whereas its antiplatelet effect has never been investigated. Herein we show that TMS at concentrations of a few micromolar selectively inhibits PAR4-mediated human platelet aggregation, ATP secretion, integrin αIIbß3 activation, and signaling pathways. In a whole-blood model of arterial flow, TMS also significantly reduced in vitro thrombus formation. Analysis of the structure-activity relationships of TMS and a panel of stilbene analogs reveal that full methylation of hydroxy groups of the stilbenes is the critical structural determinant for the anti-PAR4 activity. Our results suggest that fully methylated resveratrol analogs with anti-PAR4 activity are potential candidates for development of novel antiplatelet agents.


Assuntos
Inibidores da Agregação Plaquetária , Agregação Plaquetária , Resveratrol , Trombose , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Receptores de Trombina/metabolismo , Resveratrol/análogos & derivados , Resveratrol/farmacologia , Trombose/prevenção & controle
15.
Curr Med Res Opin ; 38(5): 803-810, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35225112

RESUMO

OBJECTIVE: This study aimed to evaluate the effectiveness of therapeutic lumbar drainage (LD) compared to therapeutic lumbar puncture (LP) for the management of intracranial hypertension (ICH) among HIV-positive patients with cryptococcal meningitis (CM). METHODS: The study was a multicenter prospective non-randomized interventional clinical trial. One hundred and sixteen HIV-associated CM patients were identified who presented with ICH (≥250 mmH2O). The LP group comprised 76 cases, while the LD group consisted of 40 cases. We compared mortality, intracranial pressure (ICP) normalization rate, and clinical symptom remission at 10 weeks, between the two groups. RESULTS: The cumulative mortality at week 10 was 22.4% in the LP group and 20% in the LD group (p = .927), without any significant difference in mortality between the two groups. Improvement after treatment at 2-weeks, ICP normalization, and headache reversal event occurrence in the two groups showed no significant difference (p > .05). The incidence of CSF Cryptococcus clearance at two weeks in the LD group was significantly higher than in the LP group (p < .05). The frequency of invasive lumbar therapeutic procedures in the LP group during the first week was higher than that of the LD group (p < .05). Localized infection at the puncture site occurred more frequently in the LD group than in the LP group (p < .05). CONCLUSION: For HIV-positive CM patients with an elevated ICP, LD and LP are comparably effective and safe options to normalize ICP. LP increases the frequency of invasive lumbar therapeutic procedures but does not incur more risk of infection events at the puncture site, while LD may accelerate CSF Cryptococcus clearance but may induce more frequent localized infection. TRIAL REGISTRATION: This study was registered as one of 12 trials under a general project at the Chinese Clinical Trial Registry (ChiCTR1900021195).


Assuntos
Infecções por HIV , Hipertensão Intracraniana , Meningite Criptocócica , Drenagem/efeitos adversos , Infecções por HIV/complicações , Humanos , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/terapia , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/terapia , Estudos Prospectivos , Punção Espinal/efeitos adversos
16.
J Nat Prod ; 84(9): 2544-2553, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34496204

RESUMO

Elevated expression of the ATP-binding cassette (ABC) drug transporter ABCG2 in cancer cells contributes to the development of the multidrug resistance phenotype in patients with advanced non-small-cell lung cancer (NSCLC). Due to the lack of U.S. Food and Drug Administration (FDA)-approved synthetic inhibitors of ABCG2, significant efforts have been invested in discovering bioactive compounds of plant origin that are capable of reversing ABCG2-mediated multidrug resistance in cancer cells. Sophoraflavanone G (SFG), a phytoncide isolated from the plant species Sophora flavescens, is known to possess a wide spectrum of pharmacological activities, including antibacterial, anti-inflammatory, antimalarial, and antiproliferative effects. In the present study, the chemosensitizing effect of SFG in ABCG2-overexpressing NSCLC cells was investigated. Experimental results demonstrate that at subtoxic concentrations SFG significantly reversed ABCG2-mediated multidrug resistance in a concentration-dependent manner. Additional biochemical data and in silico docking analysis of SFG to the inward-open conformation of human ABCG2 indicate that SFG inhibited the drug transport function of ABCG2 by interacting with residues within the transmembrane substrate-binding pocket of ABCG2. Collectively, these findings provide evidence that SFG has the potential to be further tested as an effective inhibitor of ABCG2 to improve the efficacy of therapeutic drugs in patients with advanced NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavanonas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Linhagem Celular Tumoral , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias
17.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502348

RESUMO

Human ATP-binding cassette (ABC) subfamily G member 2 (ABCG2) mediates the transport of a wide variety of conventional cytotoxic anticancer drugs and molecular targeted agents. Consequently, the overexpression of ABCG2 in cancer cells is linked to the development of the multidrug resistance (MDR) phenotype. TP-3654 is an experimental second-generation inhibitor of PIM kinase that is currently under investigation in clinical trials to treat advanced solid tumors and myelofibrosis. In this study, we discovered that by attenuating the drug transport function of ABCG2, TP-3654 resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic ABCG2 substrate drugs topotecan, SN-38 and mitoxantrone. Moreover, our results indicate that ABCG2 does not mediate resistance to TP-3654 and may not play a major role in the induction of resistance to TP-3654 in cancer patients. Taken together, our findings reveal that TP-3654 is a selective, potent modulator of ABCG2 drug efflux function that may offer an additional combination therapy option for the treatment of multidrug-resistant cancers.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Apoptose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Células Tumorais Cultivadas
18.
Front Cell Dev Biol ; 9: 699571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350184

RESUMO

The overexpression of P-glycoprotein (P-gp/ABCB1), an ATP-binding cassette (ABC) drug transporter, often contributes to the development of multidrug resistance (MDR) in cancer cells. P-gp mediates the ATP hydrolysis-dependent efflux of a wide range of chemotherapeutic agents out of cancer cells, thereby reducing the intracellular drug accumulation and decreasing the chemosensitivity of these multidrug-resistant cancer cells. Studies with tyrosine kinase inhibitors (TKIs) in P-gp-overexpressing cells have shown that certain TKIs could reverse MDR mediated by P-gp, while some TKIs are transported by P-gp. In the present work, we explored the prospect of repositioning branebrutinib (BMS-986195), a highly selective inhibitor of Bruton's tyrosine kinase (BTK), to resensitize P-gp-overexpressing multidrug-resistant cancer cells to chemotherapeutic agents. Our results demonstrated that branebrutinib is capable of reversing P-gp-mediated MDR at sub-toxic concentrations, most likely by directly inhibiting the drug transport function of P-gp. Our findings were supported by the result of branebrutinib stimulating the ATPase activity of P-gp in a concentration-dependent manner and the in silico study of branebrutinib binding to the substrate-binding pocket of P-gp. In addition, we found that branebrutinib is equally cytotoxic to drug-sensitive parental cell lines and the respective P-gp-overexpressing multidrug-resistant variants, suggesting that it is unlikely that the overexpression of P-gp in cancer cells plays a significant role in reduced susceptibility or resistance to branebrutinib. In summary, we discovered an additional pharmacological action of branebrutinib against the activity of P-gp, which should be investigated further in future drug combination studies.

19.
J Microbiol Immunol Infect ; 54(6): 1184-1187, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33840604

RESUMO

This study investigated the antimicrobial resistance of isolates from patients with refractory Helicobacter pylori. The resistance rate was 34.1% for amoxicillin, 92.7% for clarithromycin, 65.9% for metronidazole, 85.4% for levofloxacin, and 29.3% for rifabutin. Dual resistance to both clarithromycin and levofloxacin was found in 73.2%. The antimicrobial resistance rate of refractory H. pylori was extremely high, which had become a major consideration in therapeutic challenge.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/uso terapêutico , Feminino , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/epidemiologia , Helicobacter pylori/isolamento & purificação , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Taiwan
20.
Cancers (Basel) ; 12(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466597

RESUMO

The development of multidrug resistance (MDR) in cancer patients, which is often associated with the overexpression of ABCB1 (MDR1, P-glycoprotein) in cancer cells, remains a significant problem in cancer chemotherapy. ABCB1 is one of the major adenosine triphosphate (ATP)-binding cassette (ABC) transporters that can actively efflux a range of anticancer drugs out of cancer cells, causing MDR. Given the lack of Food and Drug Administration (FDA)-approved treatment for multidrug-resistant cancers, we explored the prospect of repurposing erdafitinib, the first fibroblast growth factor receptor (FGFR) kinase inhibitor approved by the FDA, to reverse MDR mediated by ABCB1. We discovered that by reducing the function of ABCB1, erdafitinib significantly resensitized ABCB1-overexpressing multidrug-resistant cancer cells to therapeutic drugs at sub-toxic concentrations. Results of erdafitinib-stimulated ABCB1 ATPase activity and in silico docking analysis of erdafitinib binding to the substrate-binding pocket of ABCB1 further support the interaction between erdafitinib and ABCB1. Moreover, our data suggest that ABCB1 is not a major mechanism of resistance to erdafitinib in cancer cells. In conclusion, we revealed an additional action of erdafitinib as a potential treatment option for multidrug-resistant cancers, which should be evaluated in future drug combination trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...