Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
NMR Biomed ; : e5162, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715420

RESUMO

Cerebrospinal fluid (CSF) plays a critical role in metabolic waste clearance from the brain, requiring its circulation throughout various brain pathways, including the ventricular system, subarachnoid spaces, para-arterial spaces, interstitial spaces, and para-venous spaces. The complexity of CSF circulation has posed a challenge in obtaining noninvasive measurements of CSF dynamics. The assessment of CSF dynamics throughout its various circulatory pathways is possible using diffusion magnetic resonance imaging (MRI) with optimized sensitivity to incoherent water movement across the brain. This review presents an overview of both established and emerging diffusion MRI techniques designed to measure CSF dynamics and their potential clinical applications. The discussion offers insights into the optimization of diffusion MRI acquisition parameters to enhance the sensitivity and specificity of diffusion metrics on underlying CSF dynamics. Lastly, we emphasize the importance of cautious interpretations of diffusion-based imaging, especially when differentiating between tissue- and fluid-related changes or elucidating structural versus functional alterations.

2.
PLoS One ; 19(3): e0299961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483851

RESUMO

In vivo noninvasive imaging of neurometabolites is crucial to improve our understanding of the underlying pathophysiological mechanism in neurodegenerative diseases. Abnormal changes in synaptic organization leading to synaptic degradation and neuronal loss is considered as one of the primary factors driving Alzheimer's disease pathology. Magnetic resonance based molecular imaging techniques such as chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) can provide neurometabolite specific information which may relate to underlying pathological and compensatory mechanisms. In this study, CEST and short echo time single voxel MRS was performed to evaluate the sensitivity of cerebral metabolites to beta-amyloid (Aß) induced synaptic deficit in the hippocampus of a mouse model of Alzheimer's disease. The CEST based spectra (Z-spectra) were acquired on a 9.4 Tesla small animal MR imaging system with two radiofrequency (RF) saturation amplitudes (1.47 µT and 5.9 µT) to obtain creatine-weighted and glutamate-weighted CEST contrasts, respectively. Multi-pool Lorentzian fitting and quantitative T1 longitudinal relaxation maps were used to obtain metabolic specific apparent exchange-dependent relaxation (AREX) maps. Short echo time (TE = 12 ms) single voxel MRS was acquired to quantify multiple neurometabolites from the right hippocampus region. AREX contrasts and MRS based metabolite concentration levels were examined in the ARTE10 animal model for Alzheimer's disease and their wild type (WT) littermate counterparts (age = 10 months). Using MRS voxel as a region of interest, group-wise analysis showed significant reduction in Glu-AREX and Cr-AREX in ARTE10, compared to WT animals. The MRS based results in the ARTE10 mice showed significant decrease in glutamate (Glu) and glutamate-total creatine (Glu/tCr) ratio, compared to WT animals. The MRS results also showed significant increase in total creatine (tCr), phosphocreatine (PCr) and glutathione (GSH) concentration levels in ARTE10, compared to WT animals. In the same ROI, Glu-AREX and Cr-AREX demonstrated positive associations with Glu/tCr ratio. These results indicate the involvement of neurotransmitter metabolites and energy metabolism in Aß-mediated synaptic degradation in the hippocampus region. The study also highlights the feasibility of CEST and MRS to identify and track multiple competing and compensatory mechanisms involved in heterogeneous pathophysiology of Alzheimer's disease in vivo.


Assuntos
Doença de Alzheimer , Creatina , Camundongos , Animais , Creatina/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais Selvagens/metabolismo , Ácido Glutâmico , Receptores de Antígenos de Linfócitos T
3.
Cell Rep ; 43(2): 113691, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38244198

RESUMO

Amyloid-ß (Aß) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aß and tau pathologies than others, gene expression may play a role. We study the association between brain-wide gene expression profiles and regional vulnerability to Aß (gene-to-Aß associations) and tau (gene-to-tau associations) pathologies by leveraging two large independent AD cohorts. We identify AD susceptibility genes and gene modules in a gene co-expression network with expression profiles specifically related to regional vulnerability to Aß and tau pathologies in AD. In addition, we identify distinct biochemical pathways associated with the gene-to-Aß and the gene-to-tau associations. These findings may explain the discordance between regional Aß and tau pathologies. Finally, we propose an analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Transcriptoma/genética , Doença de Alzheimer/genética , Perfilação da Expressão Gênica , Peptídeos beta-Amiloides , Disfunção Cognitiva/genética
4.
Brain Imaging Behav ; 18(1): 243-255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008852

RESUMO

Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Fatores de Tempo , Imageamento por Ressonância Magnética , Encéfalo , Cognição , Rede Nervosa
5.
NMR Biomed ; 37(2): e5048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798964

RESUMO

Paravascular cerebrospinal fluid (pCSF) surrounding the cerebral arteries within the glymphatic system is pulsatile and moves in synchrony with the pressure waves of the vessel wall. Whether such pulsatile pCSF can infer pulse wave propagation-a property tightly related to arterial stiffness-is unknown and has never been explored. Our recently developed imaging technique, dynamic diffusion-weighted imaging (dynDWI), captures the pulsatile pCSF dynamics in vivo and can explore this question. In this work, we evaluated the time shifts between pCSF waves and finger pulse waves, where pCSF waves were measured by dynDWI and finger pulse waves were measured by the scanner's built-in finger pulse oximeter. We hypothesized that the time shifts reflect brain-finger pulse wave travel time and are sensitive to arterial stiffness. We applied the framework to 36 participants aged 18-82 years to study the age effect of travel time, as well as its associations with cognitive function within the older participants (N = 15, age > 60 years). Our results revealed a strong and consistent correlation between pCSF pulse and finger pulse (mean CorrCoeff = 0.66), supporting arterial pulsation as a major driver for pCSF dynamics. The time delay between pCSF and finger pulses (TimeDelay) was significantly lower (i.e., faster pulse propagation) with advanced age (Pearson's r = -0.44, p = 0.007). Shorter TimeDelay was further associated with worse cognitive function in the older participants. Overall, our study demonstrated pCSF as a viable pathway for measuring intracranial pulses and encouraged future studies to investigate its relevance with cerebrovascular functions.


Assuntos
Rigidez Vascular , Humanos , Hidrodinâmica , Artérias/diagnóstico por imagem
6.
Alzheimers Res Ther ; 15(1): 218, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102714

RESUMO

BACKGROUND: White matter (WM) microstructural changes in the hippocampal cingulum bundle (CBH) in Alzheimer's disease (AD) have been described in cohorts of largely European ancestry but are lacking in other populations. METHODS: We assessed the relationship between CBH WM integrity and cognition or amyloid burden in 505 Korean older adults aged ≥ 55 years, including 276 cognitively normal older adults (CN), 142 with mild cognitive impairment (MCI), and 87 AD patients, recruited as part of the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) at Seoul National University. RESULTS: Compared to CN, AD and MCI subjects showed significantly higher RD, MD, and AxD values (all p-values < 0.001) and significantly lower FA values (left p ≤ 0.002, right p ≤ 0.015) after Bonferroni adjustment for multiple comparisons. Most tests of cognition and mood (p < 0.001) as well as higher medial temporal amyloid burden (p < 0.001) were associated with poorer WM integrity in the CBH after Bonferroni adjustment. CONCLUSION: These findings are consistent with patterns of WM microstructural damage previously reported in non-Hispanic White (NHW) MCI/AD cohorts, reinforcing existing evidence from predominantly NHW cohort studies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/complicações , Proteínas Amiloidogênicas , República da Coreia/epidemiologia
7.
medRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106123

RESUMO

The BrainAGE method is used to estimate biological brain age using structural neuroimaging. However, the stability of the model across different scan parameters and races/ethnicities has not been thoroughly investigated. Estimated brain age was compared within- and across- MRI field strength and across voxel sizes. Estimated brain age gap (BAG) was compared across demographically matched groups of different self-reported races and ethnicities in ADNI and IMAS cohorts. Longitudinal ComBat was used to correct for potential scanner effects. The brain age method was stable within field strength, but less stable across different field strengths. The method was stable across voxel sizes. There was a significant difference in BAG between races, but not ethnicities. Correction procedures are suggested to eliminate variation across scanner field strength while maintaining accurate brain age estimation. Further studies are warranted to determine the factors contributing to racial differences in BAG.

8.
J Magn Reson Imaging ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156600

RESUMO

BACKGROUND: Diffusion imaging holds great potential for the non-invasive assessment of the glymphatic system in humans. One technique, diffusion tensor imaging along the perivascular space (DTI-ALPS), has introduced the ALPS-index, a novel metric for evaluating diffusivity within the perivascular space. However, it still needs to be established whether the observed reduction in the ALPS-index reflects axonal changes, a common occurrence in neurodegenerative diseases. PURPOSE: To determine whether axonal alterations can influence change in the ALPS-index. STUDY TYPE: Retrospective. POPULATION: 100 participants (78 cognitively normal and 22 with mild cognitive impairments) aged 50-90 years old. FIELD STRENGTH/SEQUENCE: 3T; diffusion-weighted single-shot spin-echo echo-planar imaging sequence, T1-weighted images (MP-RAGE). ASSESSMENT: The ratio of two radial diffusivities of the diffusion tensor (i.e., λ2/λ3) across major white matter tracts with distinct venous/perivenous anatomy that fulfill (ALPS-tracts) and do not fulfill (control tracts) ALPS-index anatomical assumptions were analyzed. STATISTICAL TESTS: To investigate the correlation between λ2/λ3 and age/cognitive function (RAVLT) while accounting for the effect of age, linear regression was implemented to remove the age effect from each variable. Pearson correlation analysis was conducted on the residuals obtained from the linear regression. Statistical significance was set at p < 0.05. RESULTS: λ2 was ~50% higher than λ3 and demonstrated a consistent pattern across both ALPS and control tracts. Additionally, in both ALPS and control tracts a reduction in the λ2/λ3 ratio was observed with advancing age (r = -0.39, r = -0.29, association and forceps tract, respectively) and decreased memory function (r = 0.24, r = 0.27, association and forceps tract, respectively). DATA CONCLUSIONS: The results unveil a widespread radial asymmetry of white matter tracts that changes with aging and neurodegeration. These findings highlight that the ALPS-index may not solely reflect changes in the diffusivity of the perivascular space but may also incorporate axonal contributions. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

9.
medRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38014005

RESUMO

Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.

10.
Sleep Med ; 110: 44-53, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536211

RESUMO

BACKGROUND: In clinical populations, the movement of cerebrospinal fluid (CSF) during sleep is a growing area of research with potential mechanistic connections in both neurodegenerative (e.g., Alzheimer's Disease) and neurodevelopmental disorders. However, we know relatively little about the processes that influence CSF movement. To inform clinical intervention targets this study assesses the coupling between (a) real-time CSF movement, (b) neuronal-driven movement, and (c) non-neuronal systemic physiology driven movement. METHODS: This study included eight young, healthy volunteers, with concurrently acquired neurofluid dynamics using functional Magnetic Resonance Imaging (MRI), neural activity using Electroencephalography (EEG), and non-neuronal systemic physiology with peripheral functional Near-Infrared Spectroscopy (fNIRS). Neuronal and non-neuronal drivers were assessed temporally; wherein, EEG measured slow wave activity that preceded CSF movement was considered neuronally driven. Similarly, slow wave oscillations (assessed via fNIRS) that coupled with CSF movement were considered non-neuronal systemic physiology driven. RESULTS AND CONCLUSIONS: Our results document neural contributions to CSF movement were only present during light NREM sleep but low-frequency non-neuronal oscillations were strongly coupled with CSF movement in all assessed states - awake, NREM-1, NREM-2. The clinical/research implications of these findings are two-fold. First, neuronal-driven oscillations contribute to CSF movement outside of deep sleep (NREM-3); therefore, interventions aimed at increasing CSF movement may yield meaningful increases with the promotion of NREM sleep more generally - a focus on NREM S3 may not be needed. Second, non-neuronal systemic oscillations contribute across wake and sleep stages; therefore, interventions may increase CSF movement by manipulating systemic physiology.


Assuntos
Eletroencefalografia , Sono , Humanos , Sono/fisiologia , Fases do Sono/fisiologia , Vigília/fisiologia , Neurônios
11.
medRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645867

RESUMO

Amyloid-ß (Aß) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aß and tau pathologies than others, gene expression may play a role. We studied the association between brain-wide gene expression profiles and regional vulnerability to Aß (gene-to-Aß associations) and tau (gene-to-tau associations) pathologies leveraging two large independent cohorts (n = 715) of participants along the AD continuum. We identified several AD susceptibility genes and gene modules in a gene co-expression network with expression profiles related to regional vulnerability to Aß and tau pathologies in AD. In particular, we found that the positive APOE -to-tau association was only seen in the AD cohort, whereas patients with AD and frontotemporal dementia shared similar positive MAPT -to-tau association. Some AD candidate genes showed sex-dependent negative gene-to-Aß and gene-to-tau associations. In addition, we identified distinct biochemical pathways associated with the gene-to-Aß and the gene-to-tau associations. Finally, we proposed a novel analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations. Taken together, our study identified distinct gene expression profiles and biochemical pathways that may explain the discordance between regional Aß and tau pathologies, and filled the gap between gene-to-pathology associations and cognitive dysfunction in individual AD patients that may ultimately help identify novel personalized pathogenetic biomarkers and therapeutic targets. One Sentence Summary: We identified replicable cognition-related associations between regional gene expression profiles and selectively regional vulnerability to amyloid-ß and tau pathologies in AD.

12.
Neurobiol Aging ; 130: 103-113, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499587

RESUMO

Identification of biomarkers for the early stages of Alzheimer's disease (AD) is an imperative step in developing effective treatments. Cerebral blood flow (CBF) is a potential early biomarker for AD; generally, older adults with AD have decreased CBF compared to normally aging peers. CBF deviates as the disease process and symptoms progress. However, further characterization of the relationships between CBF and AD risk factors and pathologies is still needed. We assessed the relationships between CBF quantified by arterial spin-labeled magnetic resonance imaging, hypertension, APOEε4, and tau and amyloid positron emission tomography in 77 older adults: cognitively normal, subjective cognitive decline, and mild cognitive impairment. Tau and amyloid aggregation were related to altered CBF, and some of these relationships were dependent on hypertension or APOEε4 status. Our findings suggest a complex relationship between risk factors, AD pathologies, and CBF that warrants future studies of CBF as a potential early biomarker for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Biomarcadores , Circulação Cerebrovascular/fisiologia , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Fatores de Risco , Proteínas tau
13.
PLoS One ; 18(7): e0282756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471385

RESUMO

Methadone-based treatment for pregnant women with opioid use disorder is quite prevalent in the clinical environment. A number of clinical and animal model-based studies have reported cognitive deficits in infants prenatally exposed to methadone-based opioid treatments. However, the long-term impact of prenatal opioid exposure (POE) on pathophysiological mechanisms that govern neurodevelopmental impairment is not well understood. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of this study is to investigate the role of cerebral biochemistry and its possible association with regional microstructural organization in PME offspring. To understand these effects, 8-week-old male offspring with PME (n = 7) and prenatal saline exposure (PSE) (n = 7) were scanned in vivo on 9.4 Tesla small animal scanner. Single voxel proton magnetic resonance spectroscopy (1H-MRS) was performed in the right dorsal striatum (RDS) region using a short echo time (TE) Stimulated Echo Acquisition Method (STEAM) sequence. Neurometabolite spectra from the RDS was first corrected for tissue T1 relaxation and then absolute quantification was performed using the unsuppressed water spectra. High-resolution in vivo diffusion MRI (dMRI) for region of interest (ROI) based microstructural quantification was also performed using a multi-shell dMRI sequence. Cerebral microstructure was characterized using diffusion tensor imaging (DTI) and Bingham-neurite orientation dispersion and density imaging (Bingham-NODDI). MRS results in the RDS showed significant decrease in N-acetyl aspartate (NAA), taurine (tau), glutathione (GSH), total creatine (tCr) and glutamate (Glu) concentration levels in PME, compared to PSE group. In the same RDS region, mean orientation dispersion index (ODI) and intracellular volume fraction (VFIC) demonstrated positive associations with tCr in PME group. ODI also exhibited significant positive association with Glu levels in PME offspring. Significant reduction in major neurotransmitter metabolites and energy metabolism along with strong association between the neurometabolites and perturbed regional microstructural complexity suggest a possible impaired neuroadaptation trajectory in PME offspring which could be persistent even into late adolescence and early adulthood.


Assuntos
Analgésicos Opioides , Imagem de Tensor de Difusão , Gravidez , Camundongos , Animais , Masculino , Humanos , Feminino , Imagem de Tensor de Difusão/métodos , Analgésicos Opioides/metabolismo , Neuritos/metabolismo , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Metadona , Espectroscopia de Ressonância Magnética , Receptores de Antígenos de Linfócitos T/metabolismo , Encéfalo/metabolismo
14.
Neurology ; 101(2): e189-e201, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37328299

RESUMO

BACKGROUND AND OBJECTIVES: To study longitudinal associations between blood-based neural biomarkers (including total tau, neurofilament light [NfL], glial fibrillary acidic protein [GFAP], and ubiquitin C-terminal hydrolase-L1) and white matter neuroimaging biomarkers in collegiate athletes with sport-related concussion (SRC) from 24 hours postinjury to 1 week after return to play. METHODS: We analyzed clinical and imaging data of concussed collegiate athletes in the Concussion Assessment, Research, and Education (CARE) Consortium. The CARE participants completed same-day clinical assessments, blood draws, and diffusion tensor imaging (DTI) at 3 time points: 24-48 hours postinjury, point of becoming asymptomatic, and 7 days after return to play. DTI probabilistic tractography was performed for each participant at each time point to render 27 participant-specific major white matter tracts. The microstructural organization of these tracts was characterized by 4 DTI metrics. Mixed-effects models with random intercepts were applied to test whether white matter microstructural abnormalities are associated with the blood-based biomarkers at the same time point. An interaction model was used to test whether the association varies across time points. A lagged model was used to test whether early blood-based biomarkers predict later microstructural changes. RESULTS: Data from 77 collegiate athletes were included in the following analyses. Among the 4 blood-based biomarkers, total tau had significant associations with the DTI metrics across the 3 time points. In particular, high tau level was associated with high radial diffusivity (RD) in the right corticospinal tract (ß = 0.25, SE = 0.07, p FDR-adjusted = 0.016) and superior thalamic radiation (ß = 0.21, SE = 0.07, p FDR-adjusted = 0.042). NfL and GFAP had time-dependent associations with the DTI metrics. NfL showed significant associations only at the asymptomatic time point (|ß|s > 0.12, SEs <0.09, psFDR-adjusted < 0.05) and GFAP showed a significant association only at 7 days after return to play (ßs > 0.14, SEs <0.06, psFDR-adjusted < 0.05). The p values for the associations of early tau and later RD were not significant after multiple comparison adjustment, but were less than 0.1 in 7 white matter tracts. DISCUSSION: This prospective study using data from the CARE Consortium demonstrated that in the early phase of SRC, white matter microstructural integrity detected by DTI neuroimaging was associated with elevated levels of blood-based biomarkers of traumatic brain injury. Total tau in the blood showed the strongest association with white matter microstructural changes.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Futebol Americano , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Traumatismos em Atletas/diagnóstico por imagem , Estudos Prospectivos , Concussão Encefálica/diagnóstico por imagem , Futebol Americano/lesões , Biomarcadores
15.
Bone ; 173: 116808, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37207990

RESUMO

Chronic kidney disease (CKD) is characterized by secondary hyperparathyroidism and an increased risk of hip fractures predominantly related to cortical porosity. Unfortunately, bone mineral density measurements and high-resolution peripheral computed tomography (HR-pQCT) imaging have shortcomings that limit their utility in these patients. Ultrashort echo time magnetic resonance imaging (UTE-MRI) has the potential to overcome these limitations by providing an alternative assessment of cortical porosity. The goal of the current study was to determine if UTE-MRI could detect changes in porosity in an established rat model of CKD. Cy/+ rats (n = 11), an established animal model of CKD-MBD, and their normal littermates (n = 12) were imaged using microcomputed tomography (microCT) and UTE-MRI at 30 and 35 weeks of age (which approximates late-stage kidney disease in humans). Images were obtained at the distal tibia and the proximal femur. Cortical porosity was assessed using the percent porosity (Pore%) calculated from microCT imaging and the porosity index (PI) calculated from UTE-MRI. Correlations between Pore% and PI were also calculated. Cy/+ rats had higher Pore% than normal rats at both skeletal sites at 35 weeks (tibia = 7.13 % +/- 5.59 % vs. 0.51 % +/- 0.09 %, femur = 19.99 % +/- 7.72 % vs. 2.72 % +/- 0.32 %). They also had greater PI at the distal tibia at 30 weeks of age (0.47 +/- 0.06 vs. 0.40 +/- 0.08). However, Pore% and PI were only correlated in the proximal femur at 35 weeks of age (ρ = 0.929, Spearman). These microCT results are consistent with prior studies in this animal model utilizing microCT imaging. The UTE-MRI results were inconsistent, resulting in variable correlations with microCT imaging, which may be related to suboptimal bound and pore water discrimination at higher magnetic field strengths. Nevertheless, UTE-MRI may still provide an additional clinical tool to assess fracture risk without using ionizing radiation in CKD patients.


Assuntos
Fraturas do Quadril , Insuficiência Renal Crônica , Humanos , Animais , Ratos , Microtomografia por Raio-X , Porosidade , Osso Cortical/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Densidade Óssea , Modelos Animais , Insuficiência Renal Crônica/diagnóstico por imagem
16.
Psychopharmacology (Berl) ; 240(7): 1465-1472, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209164

RESUMO

RATIONALE: Little is known about how acute and chronic alcohol exposure may alter the in vivo membrane properties of neurons. OBJECTIVES: We employed neurite orientation dispersion and density imaging (NODDI) to examine acute and chronic effects of alcohol exposure on neurite density. METHODS: Twenty-one healthy social drinkers (CON) and thirteen nontreatment-seeking individuals with alcohol use disorder (AUD) underwent a baseline multi-shell diffusion magnetic resonance imaging (dMRI) scan. A subset (10 CON, 5 AUD) received dMRI during intravenous infusions of saline and alcohol during dMRI. NODDI parametric images included orientation dispersion (OD), isotropic volume fraction (ISOVF), and corrected intracellular volume fraction (cICVF). Diffusion tensor imaging metrics of fractional anisotropy and mean, axial, and radial diffusivity (FA, MD, AD, RD) were also computed. Average parameter values were extracted from white matter (WM) tracts defined by the Johns Hopkins University atlas. RESULTS: There were group differences in FA, RD, MD, OD, and cICVF, primarily in the corpus callosum. Both saline and alcohol had effects on AD and cICVF in WM tracts proximal to the striatum, cingulate, and thalamus. This is the first work to indicate that acute fluid infusions may alter WM properties, which are conventionally believed to be insensitive to acute pharmacological challenges. It also suggests that the NODDI approach may be sensitive to transient changes in WM. The next steps should include determining if the effect on neurite density differs with solute or osmolality, or both, and translational studies to assess how alcohol and osmolality affect the efficiency of neurotransmission.


Assuntos
Alcoolismo , Substância Branca , Humanos , Encéfalo/fisiologia , Imagem de Tensor de Difusão/métodos , Neuritos , Consumo de Bebidas Alcoólicas , Imagem de Difusão por Ressonância Magnética/métodos , Alcoolismo/diagnóstico por imagem
17.
medRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066317

RESUMO

BACKGROUND: White matter (WM) microstructural changes in the hippocampal cingulum bundle (CBH) in Alzheimer's disease (AD) have been described in cohorts of largely European ancestry but are lacking in other populations. METHODS: We assessed the relationship between CBH WM integrity and cognition or amyloid burden in 505 Korean older adults aged ≥55 years, including 276 cognitively normal older adults (CN), 142 mild cognitive impairment (MCI), and 87 AD, recruited as part of the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) at Seoul National University. RESULTS: Compared to CN, AD and MCI subjects showed decreased WM integrity in the bilateral CBH. Cognition, mood, and higher amyloid burden were also associated with poorer WM integrity in the CBH. CONCLUSION: These findings are consistent with patterns of WM microstructural damage previously reported in non-Hispanic White (NHW) MCI/AD cohorts, reinforcing existing evidence from predominantly NHW cohort studies.

18.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865153

RESUMO

Methadone-based treatment for pregnant women with opioid use disorder is quite prevalent in the clinical environment. A number of clinical and animal model-based studies have reported cognitive deficits in infants prenatally exposed to methadone-based opioid treatments. However, the long-term impact of prenatal opioid exposure (POE) on pathophysiological mechanisms that govern neurodevelopmental impairment is not well understood. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of this study is to investigate the role of cerebral biochemistry and its possible association with regional microstructural organization in PME offspring. To understand these effects, 8- week-old male offspring with PME (n=7) and prenatal saline exposure (PSE) (n=7) were scanned in vivo on 9.4 Tesla small animal scanner. Single voxel proton magnetic resonance spectroscopy ( 1 H-MRS) was performed in the right dorsal striatum (RDS) region using a short echo time (TE) Stimulated Echo Acquisition Method (STEAM) sequence. Neurometabolite spectra from the RDS was first corrected for tissue T1 relaxation and then absolute quantification was performed using the unsuppressed water spectra. High-resolution in vivo diffusion MRI (dMRI) for region of interest (ROI) based microstructural quantification was also performed using a multi-shell dMRI sequence. Cerebral microstructure was characterized using diffusion tensor imaging (DTI) and Bingham-neurite orientation dispersion and density imaging (Bingham-NODDI). MRS results in the RDS showed significant decrease in N-acetyl aspartate (NAA), taurine (tau), glutathione (GSH), total creatine (tCr) and glutamate (Glu) concentration levels in PME, compared to PSE group. In the same RDS region, mean orientation dispersion index (ODI) and intracellular volume fraction (VF IC ) demonstrated positive associations with tCr in PME group. ODI also exhibited significant positive association with Glu levels in PME offspring. Significant reduction in major neurotransmitter metabolites and energy metabolism along with strong association between the neurometabolites and perturbed regional microstructural complexity suggest a possible impaired neuroadaptation trajectory in PME offspring which could be persistent even into late adolescence and early adulthood.

19.
Brain Imaging Behav ; 17(2): 223-256, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36484922

RESUMO

The prevalence of Alzheimer's disease is projected to reach 13 million in the U.S. by 2050. Although major efforts have been made to avoid this outcome, so far there are no treatments that can stop or reverse the progressive cognitive decline that defines Alzheimer's disease. The utilization of preventative treatment before significant cognitive decline has occurred may ultimately be the solution, necessitating a reliable biomarker of preclinical/prodromal disease stages to determine which older adults are most at risk. Quantitative cerebral blood flow is a promising potential early biomarker for Alzheimer's disease, but the spatiotemporal patterns of altered cerebral blood flow in Alzheimer's disease are not fully understood. The current systematic review compiles the findings of 81 original studies that compared resting gray matter cerebral blood flow in older adults with mild cognitive impairment or Alzheimer's disease and that of cognitively normal older adults and/or assessed the relationship between cerebral blood flow and objective cognitive function. Individuals with Alzheimer's disease had relatively decreased cerebral blood flow in all brain regions investigated, especially the temporoparietal and posterior cingulate, while individuals with mild cognitive impairment had consistent results of decreased cerebral blood flow in the posterior cingulate but more mixed results in other regions, especially the frontal lobe. Most papers reported a positive correlation between regional cerebral blood flow and cognitive function. This review highlights the need for more studies assessing cerebral blood flow changes both spatially and temporally over the course of Alzheimer's disease, as well as the importance of including potential confounding factors in these analyses.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Biomarcadores
20.
Nat Neurosci ; 25(12): 1597-1607, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344699

RESUMO

Tau aggregation is a defining histopathological feature of Alzheimer's disease and other tauopathies. However, the cellular mechanisms involved in tau propagation remain unclear. Here, we performed an unbiased quantitative proteomic study to identify proteins that specifically interact with this tau seed. We identified Bassoon (BSN), a presynaptic scaffolding protein, as an interactor of the tau seed isolated from a mouse model of tauopathy, and from Alzheimer's disease and progressive supranuclear palsy postmortem samples. We show that BSN exacerbates tau seeding and toxicity in both mouse and Drosophila models for tauopathy, and that BSN downregulation decreases tau spreading and overall disease pathology, rescuing synaptic and behavioral impairments and reducing brain atrophy. Our findings improve the understanding of how tau seeds can be stabilized by interactors such as BSN. Inhibiting tau-seed interactions is a potential new therapeutic approach for neurodegenerative tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Camundongos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Proteômica , Encéfalo/metabolismo , Tauopatias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...