Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 8(4): e2300463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38200677

RESUMO

Monocyte recruitment and transmigration are crucial in atherosclerotic plaque development. The multi-disease complexities aggravate the situation and continue to be a constant concern for understanding atherosclerosis plaque development. Herein, a 3D hydrogel-based model that integrates disease-induced microenvironments is sought to be designed, allowing us to explore the early stages of atherosclerosis, specifically examining monocyte fate in multi-disease complexities. As a proof-of-concept study, murine cells are employed to develop the model. The model is constructed with collagen embedded with murine aortic smooth muscle cells and a murine endothelial monolayer lining. The model achieves in vitro disease complexities using external stimuli such as glucose and lipopolysaccharide (LPS). Hyperglycemia exhibits a significant increase in monocyte adhesion but no enhancement in monocyte transmigration and foam cell conversion compared to euglycemia. Chronic infection achieved by LPS stimulation results in a remarkable augment in initial monocyte attachment and a significant increment in monocyte transmigration and foam cells in all concentrations. Moreover, the model exhibits synergistic sensitivity under multi-disease conditions such as hyperglycemia and infection, enhancing initial monocyte attachment, cell transmigration, and foam cell formation. Additionally, western blot data prove the enhanced levels of inflammatory biomarkers, indicating the model's capability to mimic disease-induced complexities during early atherosclerosis progression.


Assuntos
Aterosclerose , Hiperglicemia , Placa Aterosclerótica , Animais , Camundongos , Células Espumosas/metabolismo , Hidrogéis , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo
2.
Mater Today Bio ; 22: 100767, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37600355

RESUMO

Atherosclerosis is the build-up of fatty deposits in the arteries, which is the main underlying cause of cardiovascular diseases and the leading cause of global morbidity and mortality. Current pharmaceutical treatment options are unable to effectively treat the plaque in the later stages of the disease. Instead, they are aimed at resolving the risk factors. Nanomaterials and nanoparticle-mediated therapies have become increasingly popular for the treatment of atherosclerosis due to their targeted and controlled release of therapeutics. In this review, we discuss different types of therapeutics used to treat this disease and focus on the different nanomaterial strategies employed for the delivery of these drugs, enabling the effective and efficient resolution of the atherosclerotic plaque. The ideal nanomaterial strategy for each drug type (e.g. statins, nucleic acids, small molecule drugs, peptides) will be comprehensively discussed.

3.
ACS Appl Mater Interfaces ; 15(36): 42153-42169, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37602893

RESUMO

Nanophotothermal therapy based on nanoparticles (NPs) that convert near-infrared (NIR) light to generate heat to selectively kill cancer cells has attracted immense interest due to its high efficacy and being free of ionizing radiation damage. Here, for the first time, we have designed a novel nanohybrid, silver-iron oxide NP (AgIONP), which was successfully tuned for strong absorbance at NIR wavelengths to be effective in photothermal treatment and dual-imaging strategy using MRI and photoacoustic imaging (PAI) in a cancer model in vivo and in vitro, respectively. We strategically combine the inherent anticancer activity of silver and photothermal therapy to render excellent therapeutic capability of AgIONPs. In vitro phantoms and in vivo imaging studies displayed preferential uptake of folate-targeted NPs in a cancer mice model, indicating the selective targeting efficiency of NPs. Importantly, a single intravenous injection of NPs in a cancer mice model resulted in significant tumor reduction, and photothermal laser resulted in a further substantial synergistic decrease in tumor size. Additionally, biosafety and biochemical assessment performed in mice displayed no significant difference between NP treatment and control groups. Overall, our folic acid AgIONPs displayed excellent potential in the simultaneous application for safe and successful targeted synergistic photothermal treatment and imaging of a cancer model.


Assuntos
Ferro , Prata , Animais , Camundongos , Prata/farmacologia , Diagnóstico por Imagem , Imagens de Fantasmas , Ácido Fólico
4.
Cardiovasc Res ; 119(13): 2278-2293, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37595265

RESUMO

Vascular cell adhesion molecule-1 (VCAM-1) has been well established as a critical contributor to atherosclerosis and consequently as an attractive therapeutic target for anti-atherosclerotic drug candidates. Many publications have demonstrated that disrupting the VCAM-1 function blocks monocyte infiltration into the sub-endothelial space, which effectively prevents macrophage maturation and foam cell transformation necessary for atherosclerotic lesion formation. Currently, most VCAM-1-inhibiting drug candidates in pre-clinical and clinical testing do not directly target VCAM-1 itself but rather down-regulate its expression by inhibiting upstream cytokines and transcriptional regulators. However, the pleiotropic nature of these regulators within innate immunity means that optimizing dosage to a level that suppresses pathological activity while preserving normal physiological function is extremely challenging and oftentimes infeasible. In recent years, highly specific pharmacological strategies that selectively inhibit VCAM-1 function have emerged, particularly peptide- and antibody-based novel therapeutics. Studies in such VCAM-1-directed therapies so far remain scarce and are limited by the constraints of current experimental atherosclerosis models in accurately representing the complex pathophysiology of the disease. This has prompted the need for a comprehensive review that recounts the evolution of VCAM-1-directed pharmaceuticals and addresses the current challenges in novel anti-atherosclerotic drug development.


Assuntos
Aterosclerose , Molécula 1 de Adesão de Célula Vascular , Humanos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Endotélio Vascular/metabolismo , Monócitos/metabolismo , Descoberta de Drogas , Adesão Celular
5.
ACS Nano ; 17(19): 18775-18791, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650798

RESUMO

Although poly(aspartic acid) (PASP), a strong calcium chelating agent, may be potentially effective in inhibition of vascular calcification, its direct administration may lead to side effects. In this study, we employed polysuccinimide, a precursor of PASP, to prepare targeted polysuccinimide-based nanoparticles (PSI NPs) that not only acted as a prodrug but also functioned as a carrier of additional therapeutics to provide powerful synergistic vascular anticalcification effect. This paper shows that chemically modified PSI-NPs can serve as effective nanocarriers for loading of hydrophobic drugs, in addition to anticalcification and antireactive oxygen species (anti-ROS) activities. Curcumin (Cur), with high loading efficiency, was encapsulated into the NPs. The NPs were stable for 16 h in physiological conditions and then slowly dissolved/hydrolyzed to release the therapeutic PASP and the encapsulated drug. The drug release profile was found to be in good agreement with the NP dissolution profile such that complete release occurred after 48 h at physiological conditions. However, under acidic conditions, the NPs were stable, and Cur cumulative release reached only 30% after 1 week. Though highly effective in the prevention of calcium deposition, PSI NPs could not prevent the osteogenic trans-differentiation of vascular smooth muscle cells (VSMCs). The presence of Cur addressed this problem. It not only further reduced ROS level in macrophages but also prevented osteogenic differentiation of VSMCs in vitro. The NPs were examined in vivo in a rat model of vascular calcification induced by kidney failure through an adenine diet. The inclusion of Cur and PSI NPs combined the therapeutic effects of both. Cur-loaded NPs significantly reduced calcium deposition in the aorta without adversely affecting bone integrity or noticeable side effects/toxicity as examined by organ histological and serum biochemistry analyses.

6.
Res Sq ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066342

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is protective in cardiovascular disease, lung injury and diabetes yet paradoxically underlies our susceptibility to SARs-CoV2 infection and the fatal heart and lung disease it can induce. Furthermore, diabetic patients have chronic, systemic inflammation and altered ACE2 expression resulting in increased risk of severe COVID-19 and the associated mortality. A drug that could increase ACE2 activity and inhibit cellular uptake of severe acute respiratory syndrome coronavirus 2 (SARs-CoV2), thus decrease infection, would be of high relevance to cardiovascular disease, diabetes and SARs-CoV2 infection. While the need for such a drug lead was highlighted over a decade ago receiving over 600 citations,1 to date, no such drugs are available.2 Here, we report the development of a novel ACE2 stimulator, designated '2A'(international PCT filed), which is a 10 amino acid peptide derived from a snake venom, and demonstrate its in vitro and in vivo efficacy against SARs-CoV2 infection and associated lung inflammation. Peptide 2A also provides remarkable protection against glycaemic dysregulation, weight loss and disease severity in a mouse model of type 1 diabetes. No untoward effects of 2A were observed in these pre-clinical models suggesting its strong clinical translation potential.

7.
Biomater Sci ; 11(6): 1923-1947, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36735240

RESUMO

Biological drugs (BDs) play an increasingly irreplaceable role in treating various diseases such as cancer, and cardiovascular and neurodegenerative diseases. The market share of BDs is increasingly promising. However, the effectiveness of BDs is currently limited due to challenges in efficient administration and delivery, and issues with stability and degradation. Thus, the field is using nanotechnology to overcome these limitations. Specifically, polymeric nanomaterials are common BD carriers due to their biocompatibility and ease of synthesis. Different strategies are available for BD transportation, but the use of core-shell encapsulation is preferable for BDs. This review discusses recent articles on manufacturing methods for encapsulating BDs in polymeric materials, including emulsification, nanoprecipitation, self-encapsulation and coaxial electrospraying. The advantages and disadvantages of each method are analysed and discussed. We also explore the impact of critical synthesis parameters on BD activity, such as sonication in emulsifications. Lastly, we provide a vision of future challenges and perspectives for scale-up production and clinical translation.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanotecnologia/métodos , Polímeros
8.
Small ; 19(11): e2205744, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634995

RESUMO

Thrombosis and its complications are responsible for 30% of annual deaths. Limitations of methods for diagnosing and treating thrombosis highlight the need for improvements. Agents that provide simultaneous diagnostic and therapeutic activities (theranostics) are paramount for an accurate diagnosis and rapid treatment. In this study, silver-iron oxide nanoparticles (AgIONPs) are developed for highly efficient targeted photothermal therapy and imaging of thrombosis. Small iron oxide nanoparticles are employed as seeding agents for the generation of a new class of spiky silver nanoparticles with strong absorbance in the near-infrared range. The AgIONPs are biofunctionalized with binding ligands for targeting thrombi. Photoacoustic and fluorescence imaging demonstrate the highly specific binding of AgIONPs to the thrombus when functionalized with a single chain antibody targeting activated platelets. Photothermal thrombolysis in vivo shows an increase in the temperature of thrombi and a full restoration of blood flow for targeted group but not in the non-targeted group. Thrombolysis from targeted groups is significantly improved (p < 0.0001) in comparison to the standard thrombolytic used in the clinic. Assays show no apparent side effects of AgIONPs. Altogether, this work suggests that AgIONPs are potential theranostic agents for thrombosis.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Trombose , Humanos , Terapia Fototérmica , Prata , Nanopartículas Metálicas/uso terapêutico , Trombose/diagnóstico por imagem , Trombose/terapia , Imagem Multimodal/métodos , Nanopartículas Magnéticas de Óxido de Ferro , Nanomedicina Teranóstica/métodos , Fototerapia/métodos
9.
ACS Biomater Sci Eng ; 9(6): 2846-2856, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-33617219

RESUMO

Coenzyme-Q10 (CoQ10) is a hydrophobic benzoquinone with antioxidant and anti-inflammatory properties. It is known to reduce oxidative stress in various health conditions. However, due to the low solubility, permeability, stability, and poor oral bioavailability, the oral dose of CoQ10 required for the desired therapeutic effect is very high. In the present study, CoQ10 is encapsulated into two milk derived proteins ß-lactoglobulin and lactoferrin (BLG and LF) to produce self-assembled nanostructures of around 100-300 nm with high encapsulation efficiency (5-10% w/w). Both CoQ10-BLG and CoQ10-LF nanoparticles (NPs) significantly improved the aqueous solubility of CoQ10 60-fold and 300-fold, compared to CoQ10 alone, which hardly dissolves in water. Insight into the difference in solubility enhancement between BLG and LF was obtained using in silico modeling, which predicted that LF possesses multiple prospective CoQ10 binding sites, potentially enabling greater loading of CoQ10 on LF compared to BLG, which was predicted to be less capable of binding CoQ10. At pH 7.4, CoQ10-LF NPs showed a burst release between 30 min and 2 h then plateaued at 12 h with 30% of the total drug released over 48 h. However, pure CoQ10-BLG and pure CoQ10 had a significantly lower release rate with less than 15% and 8% cumulative release in 48 h, respectively. Most importantly, both BLG and LF NPs significantly improved CoQ10 permeability compared to the pre-dissolved drug across the Caco-2 monolayer with up to 2.5-fold apparent permeability enhancement for CoQ10-LF─further confirming the utility of this nanoencapsulation approach. Finally, in murine macrophage cells (J774A.1), CoQ10-LF NPs displayed significantly higher anti-ROS properties compared to CoQ10 (predissolved in DMSO) without affecting the cell viability. This study paves the way in improving oral bioavailability of poorly soluble drugs and nutraceuticals using milk-based self-assembled nanoparticles.


Assuntos
Antioxidantes , Nanopartículas , Humanos , Camundongos , Animais , Células CACO-2 , Estudos Prospectivos , Antioxidantes/metabolismo , Nanopartículas/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-34651465

RESUMO

Stem cell (SC) therapies displayed encouraging efficacy and clinical outcome in various disorders. Despite this huge hype, clinical translation of SC therapy has been disheartening due to contradictory results from clinical trials. The ability to monitor migration and engraftment of cells in vivo represents an ideal strategy in cell therapy. Therefore, suitable imaging approach to track MSCs would allow understanding of migratory and homing efficiency, optimal route of delivery and engraftment of cells at targeted location. Hence, longitudinal tracking of SCs is crucial for the optimization of treatment parameters, leading to improved clinical outcome and translation. Magnetic resonance imaging (MRI) represents a suitable imaging modality to observe cells non-invasively and repeatedly. Tracking is achieved when cells are incubated prior to implantation with appropriate contrast agents (CA) or tracers which can then be detected in an MRI scan. This review explores and emphasizes the importance of monitoring the distribution and fate of SCs post-implantation using current contrast agents, such as positive CAs including paramagnetic metals (gadolinium), negative contrast agents such as superparamagnetic iron oxides and 19 F containing tracers, specifically for the in vivo tracking of MSCs using MRI. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanopartículas de Magnetita , Células-Tronco Mesenquimais , Rastreamento de Células/métodos , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/patologia , Células-Tronco
11.
Mater Sci Eng C Mater Biol Appl ; 131: 112477, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857262

RESUMO

In this study, modular two-in-one nano-cocktails were synthesised to provide treatment of inflammatory diseases and also enable tracking of their delivery to the disease sites. Chitosan nano-cocktails loaded with treatment module (cerium oxide nanoparticles) and imaging module (iron oxide nanoparticles) were synthesised by electrostatic self-assembly (Chit-IOCO) and ionic gelation method (Chit-TPP-IOCO), respectively. Their MRI capability, anti-inflammatory and anti-fibrosis ability were investigated. Results demonstrated that Chit-IOCO significantly reduced the expression of TNF-α and COX-2, while Chit-TPP-IOCO reduced IL-6 in the LPS-stimulated macrophages RAW264.7. Cytotoxicity studies showed that the nano-cocktails inhibited the proliferation of macrophages. Additionally, Chit-IOCO exhibited higher in vitro MRI relaxivity than Chit-TPP-IOCO, indicating that Chit-IOCO is a better MRI contrast agent in macrophages. It was possible to track the delivery of Chit-IOCO to the inflamed livers of CCl4-treated C57BL/6 mice, demonstrated by a shortened T2⁎ relaxation time of the livers after injecting Chit-IOCO into mice. In vivo anti-inflammatory and blood tests demonstrated that Chit-IOCO reduced inflammation-related proteins (TNF-a, iNOS and Cox-2) and bilirubin in CCl4 treated C57BL/6. Histology images indicated that the nano-cocktails at the treatment doses did not affect the organs of the mice. Importantly, the nano-cocktail reduced fibrosis of CCl4-treated mouse liver. This is the first reported data on the anti-inflammation and anti-fibrosis efficacy of Chit-IOCO in C57BL/6 mouse liver inflammation model. Overall, Chit-IOCO nanoparticles have shown great potential in MR imaging/detecting and treating/therapeutic capabilities for inflammatory diseases.


Assuntos
Quitosana , Nanopartículas , Animais , Anti-Inflamatórios/farmacologia , Compostos Férricos , Camundongos , Camundongos Endogâmicos C57BL
12.
J Mater Chem B ; 9(36): 7291-7301, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34355717

RESUMO

The biological applications of cerium oxide nanoparticles (nanoceria) have received extensive attention in recent decades. The coexistence of trivalent cerium and tetravalent cerium on the surface of nanoceria allows the scavenging of reactive oxygen species (ROS). The regeneratable changes between Ce3+ and Ce4+ make nanoceria a suitable therapeutic agent for treating ROS-related diseases and inflammatory diseases. The size, morphology and Ce3+/Ce4+ state of cerium oxide nanoparticles are affected by the synthesis method. This review focuses on various synthesis methods of cerium oxide nanoparticles and discusses their corresponding physical characteristics, and anti-ROS and anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/química , Cério/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Humanos , Micelas , Espécies Reativas de Oxigênio/metabolismo
13.
Nanotheranostics ; 5(4): 499-514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367883

RESUMO

Cardiovascular disease (CVD) is the leading cause of death worldwide. CVD includes a group of disorders of the heart and blood vessels such as myocardial infarction, ischemic heart, ischemic injury, injured arteries, thrombosis and atherosclerosis. Amongst these, atherosclerosis is the dominant cause of CVD and is an inflammatory disease of the blood vessel wall. Diagnosis and treatment of CVD remain the main challenge due to the complexity of their pathophysiology. To overcome the limitations of current treatment and diagnostic techniques, theranostic nanomaterials have emerged. The term "theranostic nanomaterials" refers to a multifunctional agent with both therapeutic and diagnostic abilities. Theranostic nanoparticles can provide imaging contrast for a diversity of techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT). In addition, they can treat CVD using photothermal ablation and/or medication by the drugs in nanoparticles. This review discusses the latest advances in theranostic nanomaterials for the diagnosis and treatment of CVDs according to the order of disease development. MRI, CT, near-infrared spectroscopy (NIR), and fluorescence are the most widely used strategies on theranostics for CVDs detection. Different treatment methods for CVDs based on theranostic nanoparticles have also been discussed. Moreover, current problems of theranostic nanoparticles for CVDs detection and treatment and future research directions are proposed.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Nanopartículas , Aterosclerose/diagnóstico , Aterosclerose/terapia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Humanos , Medicina de Precisão , Nanomedicina Teranóstica
14.
ACS Pharmacol Transl Sci ; 3(3): 457-471, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32566912

RESUMO

Toll-like receptors (TLRs) are dominant components of the innate immune system. Activated by both pathogen-associated molecular patterns and damage-associated molecular patterns, TLRs underpin the pathology of numerous inflammation related diseases that include not only immune diseases, but also cardiovascular disease (CVD), diabetes, obesity, and cancers. Growing evidence has demonstrated that TLRs are involved in multiple cardiovascular pathophysiologies, such as atherosclerosis and hypertension. Specifically, a trial called the Canakinumab Anti-inflammatory Thrombosis Outcomes Study showed the use of an antibody that neutralizes interleukin-1ß, reduces the recurrence of cardiovascular events, demonstrating inflammation as a therapeutic target and also the research value of targeting the TLR system in CVD. In this review, we provide an update of the interplay between TLR signaling, inflammatory mediators, and atherothrombosis, with an aim to identify new therapeutic targets for atherothrombotic CVD.

15.
Cardiovasc Res ; 116(13): 2055-2068, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32077918

RESUMO

As nanotechnologies advance into clinical medicine, novel methods for applying nanomedicine to cardiovascular diseases are emerging. Extensive research has been undertaken to unlock the complex pathogenesis of atherosclerosis. However, this complexity presents challenges to develop effective imaging and therapeutic modalities for early diagnosis and acute intervention. The choice of ligand-receptor system vastly influences the effectiveness of nanomedicine. This review collates current ligand-receptor systems used in targeting functionalized nanoparticles for diagnosis and treatment of atherosclerosis. Our focus is on the binding affinity and selectivity of ligand-receptor systems, as well as the relative abundance of targets throughout the development and progression of atherosclerosis. Antibody-based targeting systems are currently the most commonly researched due to their high binding affinities when compared with other ligands, such as antibody fragments, peptides, and other small molecules. However, antibodies tend to be immunogenic due to their size. Engineering antibody fragments can address this issue but will compromise their binding affinity. Peptides are promising ligands due to their synthetic flexibility and low production costs. Alongside the aforementioned binding affinity of ligands, the choice of target and its abundance throughout distinct stages of atherosclerosis and thrombosis is relevant to the intended purpose of the nanomedicine. Further studies to investigate the components of atherosclerotic plaques are required as their cellular and molecular profile shifts over time.


Assuntos
Anti-Inflamatórios/administração & dosagem , Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Meios de Contraste/administração & dosagem , Portadores de Fármacos , Imagem Molecular , Nanopartículas , Inibidores de Proteases/administração & dosagem , Animais , Anti-Inflamatórios/química , Aterosclerose/enzimologia , Aterosclerose/imunologia , Biomarcadores/metabolismo , Composição de Medicamentos , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Ligantes , Terapia de Alvo Molecular , Nanomedicina , Peptídeo Hidrolases/metabolismo , Placa Aterosclerótica , Valor Preditivo dos Testes , Inibidores de Proteases/química
16.
ACS Appl Bio Mater ; 2(12): 5930-5940, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021514

RESUMO

Overproduction of reactive oxygen species (ROS) is commonly known as a key factor in the progression of many chronic inflammation diseases such as atherosclerosis and rheumatoid arthritis. In this study, a metal oxide nanodot-coated layered double hydroxide (LDH) nanocomposite is constructed for theranostics of ROS-related diseases. This is the first time that both cerium oxide and iron oxide nanoparticles (NPs) were attached on the surface of LDH NPs through electrostatic interaction via a nanoengineering approach. LDHs served as nanocarriers, cerium oxide NPs served as therapeutic agents due to the antioxidant properties, and iron oxide NPs served as magnetic resonance imaging (MRI) contrast agents. In vitro studies have demonstrated that the constructed nanocomposites have good biocompatibility, good antioxidant capacity to reduce ROS level in the cells, as well as satisfying cell imaging effect in MRI. Functionalization of LDH surface with cerium oxide NPs and iron oxide NPs allows the simultaneous therapy and diagnosis of ROS-related diseases and may also allow biodistribution tracking of the therapeutic cerium oxide NPs.

17.
Nanoscale ; 10(31): 15103-15115, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30059122

RESUMO

The early detection and accurate characterization of life-threatening diseases such as cardiovascular disease and cancer are critical to the design of treatment. Knowing whether or not a thrombus in a blood vessel is new (fresh) or old (constituted) is very important for physicians to decide a treatment protocol. We have designed smart MRI nano-sensors that can detect, sense and report the stage or progression of cardiovascular diseases such as thrombosis. The nanosensors were functionalized with fibrin-binding peptide to specifically target thrombus and were also labelled with fluorescent dye to enable optical imaging. We have demonstrated that our nanosensors were able to switch between the T1 and T2 signal depending on thrombus age or the presence or absence of thrombin at the thrombus site. The developed nanosensors appeared to be non-toxic when tested with Chinese Hamster Ovarian cells within the tested concentrations. The working principle demonstrated in this study can be applied to many other diseases such as cancer.


Assuntos
Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Trombina/análise , Trombose/diagnóstico por imagem , Animais , Células CHO , Cricetulus , Compostos Férricos , Humanos , Peptídeos
18.
J Mater Chem B ; 6(30): 4937-4951, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32255067

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are key signaling molecules that play an important role in the inflammation and progression of many diseases such as cardiovascular disease, especially atherosclerosis. ROS are in particular a significant factor in the development of rheumatoid arthritis and other autoimmune diseases such as allergies. In this study, novel Fe3O4/CeO2 core-shell theranostic nanoparticles capable of reacting with ROS and of being detected by MRI were synthesized and thoroughly characterized. In vitro studies, such as measurement of cell uptake, magnetic resonance imaging, toxicity and ROS scavenging, were conducted. The results indicate that the novel Fe3O4/CeO2 theranostic nanoparticles are effective for scavenging ROS and show excellent magnetic resonance (MR) imaging performance. These theranostic nanomaterials, therefore, show great potential for the treatment and diagnosis of ROS-related inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...